Use of the pre-combustion chamber (PCC) as an ignition source in large-bore natural gas engines has shown promise in reducing emissions. By increasing the ignition energy and surface area via a turbulent jet, these devices can extend the lean operating limit of the engine and reduce oxides of nitrogen (NOx). This study aims to characterize the sensitivity of main chamber NOx formation to changes in the PCC jet. A CFD model of a Cooper-Bessemer GMV two-stroke lean-burn natural gas engine is used for this purpose. The temperature and chemical composition of the PCC jet are varied across several ...
Use of the pre-combustion chamber (PCC) as an ignition source in large-bore natural gas engines has shown promise in reducing emissions. By increasing the ignition energy and surface area via a turbulent jet, these devices can extend the lean operating limit of the engine and reduce oxides of nitrogen (NOx). This study aims to characterize the sensitivity of main chamber NOx formation to changes in the PCC jet. A CFD model of a Cooper-Bessemer GMV two-stroke lean-burn natural gas engine is used for this purpose. The temperature and chemical composition of the PCC jet are varied across several tasks, and the resulting changes in main chamber NOx emissions are recorded. Three-dimensional plotting tools are used to determine where and when NOx forms in the engine during the cycle. Data on the chemical pathways to NO and NO2 formation and destruction is also presented.