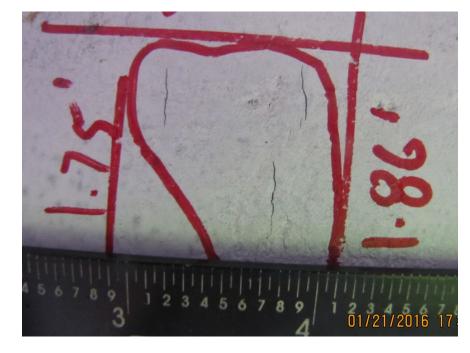


Pipeline Research Council International

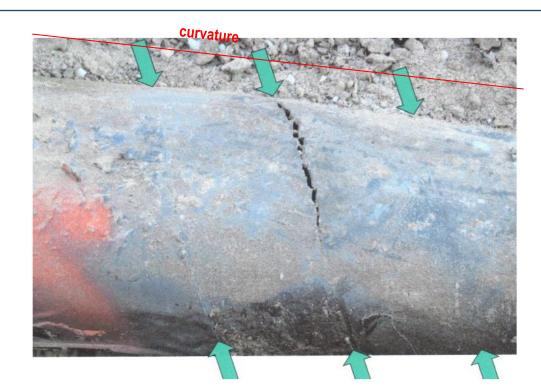
Overview

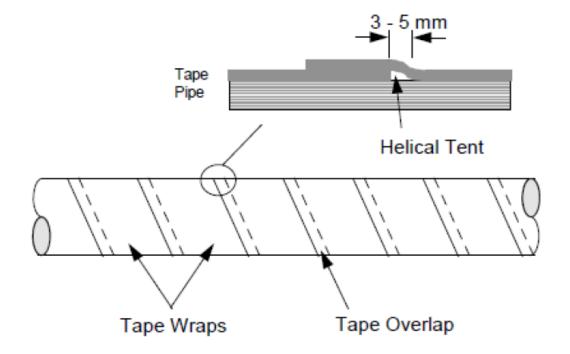
- Examples of C-SCC
- Susceptibility
- Integrity Management
 - Susceptibility and detection using data integration
 - Growth rate
 - FFS assessment
 - Repair and remediation
- Next steps

Part 1


Examples of C-SCC

C-SCC, Non-Leak, Tape Coated





C-SCC related to Tape Overlap

Tape Overlap Areas

Over the ditch "Polyken" polyethylene tape wrap Coating choice of the 1970's

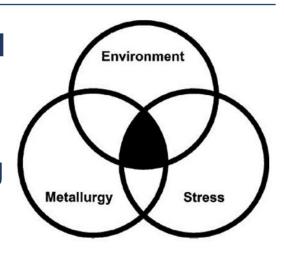
Complex SCC with Circumferential Component

SCC in multiple directions

hoop

Complex SCC with Circumferential Component

Should this be treated as A-SCC or C-SCC?

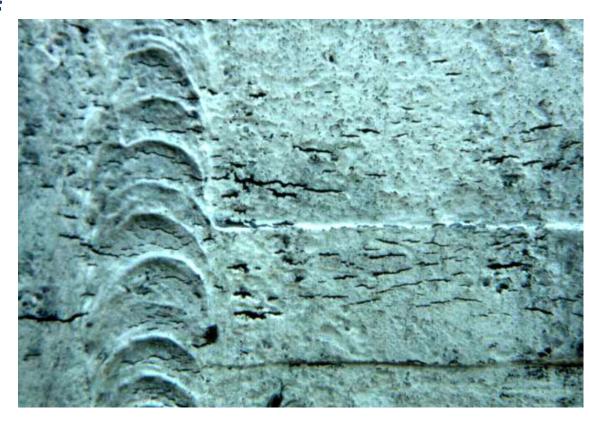

The individual cracks within the SCC colony are axial. The colony follows the disbonded coating along a spiral path.

8

Susceptibility

Conditions for C-SCC

- Condition 1 Susceptible pipe material, surface condition and steel microstructure;
 - Carbon steel is known to be a susceptible material.
- Condition 2 A potent cracking environment and tape coating
 - Tape coating on pipe: when non-conductive plastic tape coatings become disbonded, the pipe surface is shielded from CP current
 - Over the ditch applied tape coatings can become disbonded due to potential application issues and/or soil stresses.
 - Including shrink sleeves (Note: some FBE coated pipelines in the 1980's utilized shrink sleeves at field joints)
 - Various soil types and ground moisture conditions conducive to NNpH SCC.
 - Anaerobic clay and silts are more susceptible.
 - NNpH SCC also found under Asphalt and Coal Tar coatings but less frequent
- Condition 3 A tensile longitudinal/axial stress higher than the threshold stress


Coating Type	#	Percent
Tape	44	86%
Asphalt	4	8%
Coal Tar	2	4%
Shrink Sleeve	1	2%
Total:	51	

R. R. Fessler and A.D. Batte, "Criteria for Susceptibility to Circumferential SCC," Nov. 8, 2013.

9

A-SCC vs. C-SCC: Conditions 1 & 2

- NNpH SCC does not seem to discrimination on the actual metallurgy of the carbon steel.
- Given the right environment conditions the NNpH SCC occurred without bias in:
 - Base metal,
 - DSAW seam,
 - SMAW girth weld, and
 - HAZ of seam and girth weld
- There is no evidence to suggest that the pipe that contains C-SCC has any unusual composition, microstructure, or mechanical properties.

C-SCC: Condition 3

Tensile stress higher than a threshold stress

• For A-SCC, hoop stress greater than 50-60% SMYS leads to increased susceptibility, although A-SCC has been found at lower hoop stress level.

Axial/longitudinal stress for C-SCC

- Axial/longitudinal stress from Poisson's effect alone is below the threshold stress.
- Stresses from non-operational conditions must exist.

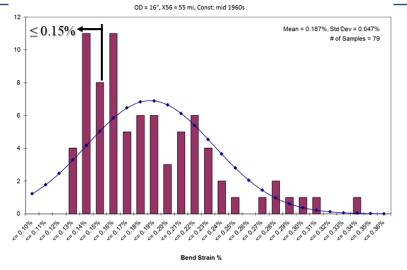
Sources of axial/longitudinal stresses

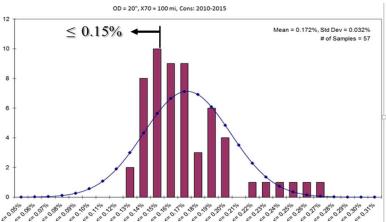
- Residual stresses from pipe/fitting manufacturing and field bending
- Construction stresses
- Stresses from post-construction settlements
- Geohazards

Longitudinal/Axial Strain

Texas Farmland - Bend Strain Histogram

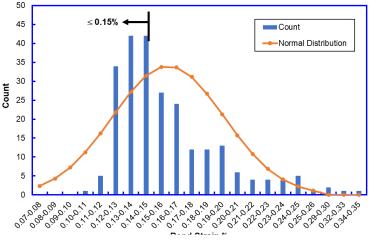
56-79 strain features have long. stress > 90% SMYS


1.0-1.4 features / per mile


Highest tension strain = 0.42%

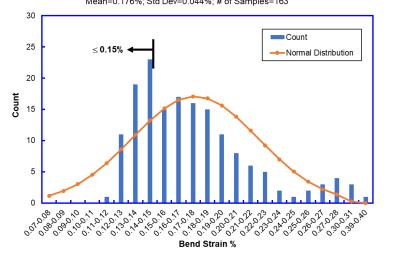
37-57 strain features have long. stress > 90% SYMS

0.4-0.6 features / per mile


Highest tension strain = 0.35%

Ref: Wang, Y.-Y, Liu, B., and Fleck P., "Strain-Based Design and Assessment of New and Ageing Pipelines," Technology for Future and Ageing Pipelines, 2022, Gent, Belgium.


OD=22"; 94 miles through moderate landslide hazard area Mean=0.159%; Std Dev=0.037%; # of Samples=240



125-234 strain features have long. stress > 90% SYMS

1.3-2.5 features / per mile

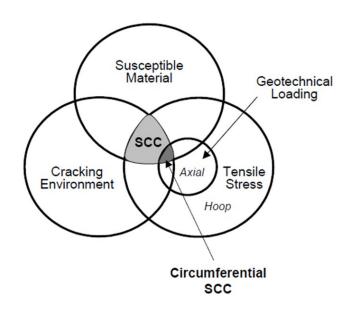
Highest tension strain = 0.43%

109-162 strain features have long. stress > 90% SYMS

1.6-2.4 features / per mile

Highest tension strain = 0.48%

Bend Strains > 0.15% in combination with other functional loads is equal to longitudinal stress > 90% SMYS.


Longitudinal/Axial Strain - Implications

- The strain features shown were not related to identifiable geohazards.
- Most of the strain features were related to tie-ins, minor settlements, and roping
- Approximately 0.5-2.5 sites per mile of pipeline has longitudinal stress greater than typical design stress limit of 90% SMYS.
 - Sites exceeding 50-60% SMYS would be at a greater frequency.
- The high-end of total tensile strain is in the range of 0.35-0.50%.

C-SCC – Emerging Trends

- C-SCC can exist in locations not associated with identifiable geohazards.
 - Many operators are seeing most of the C-SCC locations are not in areas of geohazards.
 - Some operators have observed a strong correlation with geohazards
- Isolated incidents attributable to C-SCC are mostly leaks, not ruptures.

From API RP 1176 2016 Edition

"Geotechnical Loading" is no longer an accurate description.

Part 3 Integrity Management Process

- Susceptibility and detection of C-SCC
- Growth rate
- FFS
- Repair and mitigation

Part 3a

Integrity Management

Susceptibility and Detection of C-SCC by Data Integration

Susceptibility and Detection Using Data Integration

- Areas where A-SCC has been found since the environmental conditions exist
- High axial/longitudinal stresses
 - ILI-IMU, bend strain features
 - Geohazards
 - Bends, challenging construction conditions
 - Tie-in locations
 - Crossings
- Other ILI indications (e.g., MFL)
 - Areas of very low level metal loss indicative of disbonded coating
 - Signals present in the axial MFL, but not the circumferential MFL
 - Axial length to circumferential width of signals only present in the axial MFL
 - Circumferential patterns in the ID/OD discrimination signals indicative of a deeper crack

Integrity Management

Growth Rate

Growth Rate & Dormancy

Possible sources of axial/longitudinal stresses

- Residual stresses from pipe/fitting manufacturing and field bends
- Construction stresses
- Stresses from post-construction settlements
- Geohazards

These stresses have different characteristics.

- Residual stress does not increase over time. The magnitude may decrease after cracking if external loading does not change.
- Construction stresses most likely do not increase with time.
- Stresses from post-construction settlements most likely increase in first a few years, then stabilize.
- Stress from geohazards could increase over time.
- Most axial/longitudinal stresses are not cyclic at high frequency, different from hoop stress in liquid pipelines.

Depth Growth Rate: A-SCC vs. C-SCC

Time average methodology for A-SCC

- A 5-10 yr initiation period: coating breakdown and development of an environment for crack initiation.
- Hoop stress is above the threshold stress level for SCC initiation and growth.

· C-SCC

- The 5-10 yr initiation period still applies.
- Magnitude of axial/longitudinal stresses over time varies, depending on the nature of the stresses.
- Two scenarios
 - Scenario 1: If the axial stress is from residual stresses, locked-in installation stress and or minor settlement shortly after construction, the time average method applies.
 - Scenario 2: If the axial/longitudinal stress is from land movement with increasing stress over time, then multiple ILI may be required to account for possible varying growth rates.

Growth Rate & Dormancy

It's conceivable

- Some forms of stresses contributing to C-SCC initiation might not be high enough to
 - Cause continued growth
 - Lead to leak or rupture
- Other forms of stresses can increase in magnitude
 - Maintain growth rate
 - Cause leak or rupture

Observations from incidents

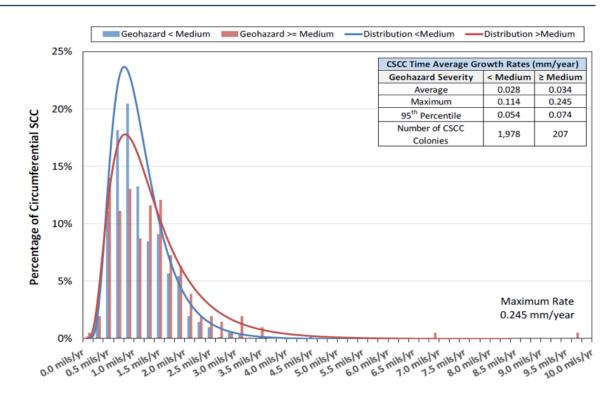
Isolated incidents attributable to C-SCC are mostly leaks, not ruptures.

Takeaway

It is useful to look at growth rates for different stress scenarios.

22

C-SCC – Time Averaged Depth Growth Rate


One operator

- NNpH SCC for diameters ≤ 12.75" have similar axial and circumferential growth rates.
- The table below is based on SCC that have failed and is representative of the more aggressive growth rates

Sample	Mean	Std Dev	95% of Distribution
	mils/yr	mils/yr	mils/yr
All ≤ 12.75 in.	4.28	1.31	6.44
C-SCC	4.72	1.46	7.13

Another operator

- A larger population
- 95 Percentile growth rates for NNpH C-SCC as:
 2.1-2.9 mils/yr and a maximum of 9.6 mils/yr

N. Bates, M. Brimacombe, and S. Polasik, "Development and Experiences of a Circumferential Stress Corrosion Crack Management Program," IPC2018-78315, Calgary, Alberta, Canada, September 24-18, 2018.

Part 3c

Integrity Management FFS Assessment

Strain-Based Assessment

- Stress or strain likely to have integrity consequences are that at high magnitude
 - Stress > 90% SMYS
 - Strain > 0.2%
- The state of loading can be more precisely measured in strains than stresses at this stress/strain level.
- Stress-based assessment procedures tend to
 - Become less accurate when resolving strains
 - Produce overly conservative outcomes, leading to unnecessary mitigations

Benefits of Strain-Based Assessment – Effective Mitigation

- Mitigation of circumferential (C-SCC) features, example
 - 3000+ identified features
 - Using SBA, about 2% of the features did not pass the first screening.
 - Further analysis would reduce this number even further
 - E.g., the 2% features include high bend strain locations from manufactured or field bends
 - Using stress-based FFS, many more features (>>2%) failed the screening.

Benefits of Strain-Based Assessment - Safety

- SBA puts focus on managing axial/longitudinal stress/strain.
- Safety margin = strain capacity strain demand
- When working with geohazards, internal pressure is not the primary driver.
- Safety must be managed by checking the safety margin in axial/longitudinal strains.
 - Pressure reduction may not get the safety margin as one might expect.

Example Applications

- C-SCC was identified through ILI.
- The sites were also identified as potentially having geohazards.
- The sites are operating at lower pressures than the pressure at time of the ILI.
- Desired:
 - Access the sites at a later time when the ground conditions are more favorable.
 - Maintain service

SBA was done to

- Determines the time window for mitigation
 - Determine the margin of safety due to low operating pressure, e.g., increase tensile strain capacity (TSC)
 - Count for SCC growth over time, lead to reduction to TSC
- Safety margin at different sites, thus priority of mitigation

Follow-on

- Confirmation of C-SCC
- Mechanical tests to facilitate the determination of TSC

27

Part 3d

Integrity Management

Repair and Remediation

Repair and Mitigation

- Pipe replacement and type B sleeves are typical repair methods
- Many of current repair approaches for axial flaws have not been designed and validated for high longitudinal stress conditions.
- Need to consider loads during and after repair
- Specific issues
 - Grinding: minor buffing up to certain percentage of wt should be OK, provided the hoop dimensions are properly limited.
 - Composite wraps: not designed for pure axial loads, can reduce stress from bend loads
 - Type-A sleeves: can reduce stress from bend loads
 - Compression sleeves
 - Reduce stress from bend loads
 - Some protection against axial load due to shrink fit plus shear bond.
 - Increase TSC of carrier pipe due to hoop stress reduction

Part 4 Next Steps

Annex N of API RP 1176, Management of Circum. Cracks

- Background and Scope
- Comparing and Contrasting Axial and Circumferential Crack Threats
- Susceptibility
- Detection, Characterization, and Sizing of CC
- Growth Rate
- Overall Management
- Overview of Fitness-for-Service Assessment Methods
- Mitigation
- References

New Initiative Being Considered

Joint effort

- Pipeline operators
- ILI vendors and SMEs
- FFS SMEs

Key issues to be resolved

- Susceptibility from latest findings
- Growth rate / dormancy
- Integrity assessment

Concluding Remarks

- C-SCC has been identified by multiple operators.
- C-SCC does not appear to be a major integrity threat.
- There is no established practice for managing C-SCC.
- What would be a balanced practical approach?
 - Recognize the differences between A-SCC and C-SCC
 - The stresses that drive C-SCC are different from those that drive A-SCC

New concepts

- Safety margin primarily based on axial/longitudinal strains
- Strain-based assessment

Gaps

- ILI
- Susceptibility
- Growth rate & dormancy

33

Yong-Yi Wang CRES

614-419-2366

ywang@cres-americas.com