

# Guidance on Welding Procedure Qualifications to Prevent Low Strain Failures of Girth Welds

Yong-Yi Wang, Ph.D., Dan Jia, Ph.D., and Banglin Liu, PE, CRES Steve Rapp and Russell Scoles, Enbridge Liz Rutherford, Energy Transfer

San Diego, California February 27, 2024



**Pipeline Research Council International** 

#### Overview

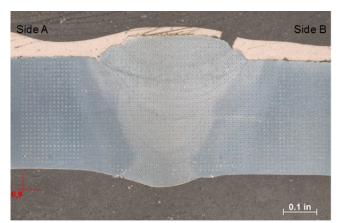
- Problem statement
- Holistic view of girth weld integrity
- Current requirements in girth weld procedure qualifications
- Linkage
  - Actual strength of pipe
  - Impact of welding heat input
  - Tensile strain capacity of undermatching girth welds
  - Strain demand from field service conditions
- Qualification requirements
  - Requirements rooted in fundamentals
  - Practical requirements in consideration of current practice
- Concluding remarks

2

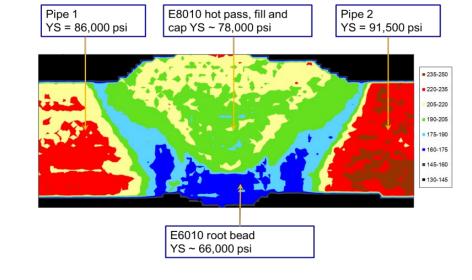
#### **Problem Statement – Grith Weld Failures at Low Strain**

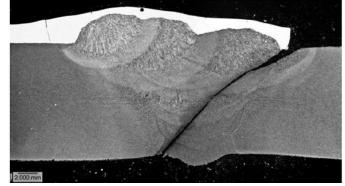
 Recent systematic investigation started ~2015

- Incidents
  - occurred in-service and during hydrostatic testing
  - 30+ incidents.
    - US
    - Asia
    - South America
  - Grade: X52 to X80
  - Manual or semi-automatic welds
- Some incidents before 2015 may have similar contributing factors.



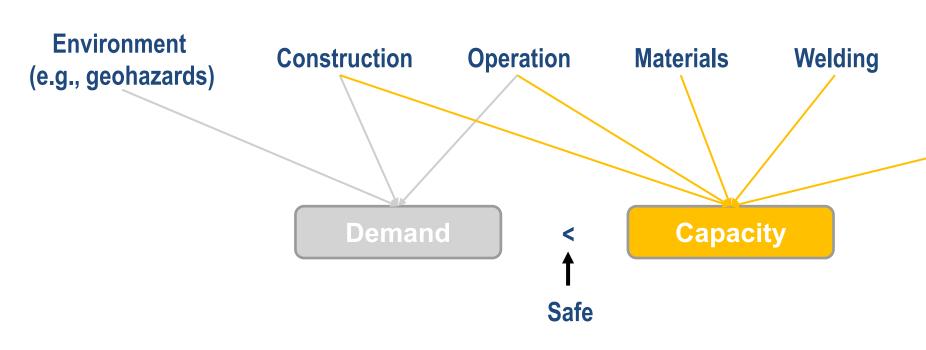

| Incident No. | OD (inch)                     | Grade       | Nature of Incident    | Approximate Elapsed<br>Time for Start of Service |
|--------------|-------------------------------|-------------|-----------------------|--------------------------------------------------|
| 1            | 20"                           | X70<br>PSL2 | In-Service<br>Rupture | 1 Year                                           |
| 2            | 30"+                          | X80/X70     | In-Service<br>Rupture | 6 years                                          |
| 3            | 12.75"                        | X52         | In-Service<br>Leak    | 14 years                                         |
| 4            | 30"                           | X70M        | Hydrostatic<br>Leak   | N/A                                              |
| 5            | 30"                           | X70         | Hydrostatic<br>Leak   | N/A                                              |
| 6            | 42"                           | X70<br>PSL2 | In-Service<br>Rupture | 3 years                                          |
| 7            | 12.75"                        | X52/X65     | In-Service<br>Rupture | 4-5 years                                        |
| 8            | 24"                           | X70         | In-Service<br>Rupture | 3.5 years                                        |
| 9            | 36"                           | X70         | Hydrostatic<br>Leak   | N/A                                              |
| 10           | Information can't be released | X70         | In-Service<br>Rupture | Less than 1<br>year                              |
|              |                               |             |                       |                                                  |





## **Major Contributing Factors to Observed Failures**

- Weld strength undermatching
- HAZ softening
- Elevated stress












### **Holistic View of Girth Weld Integrity**



Anomalies developed after construction (e.g., mechanical damage, corrosion, SCC)

### **Current Approach in Welding Procedure Qualification**

#### Main body - workmanship

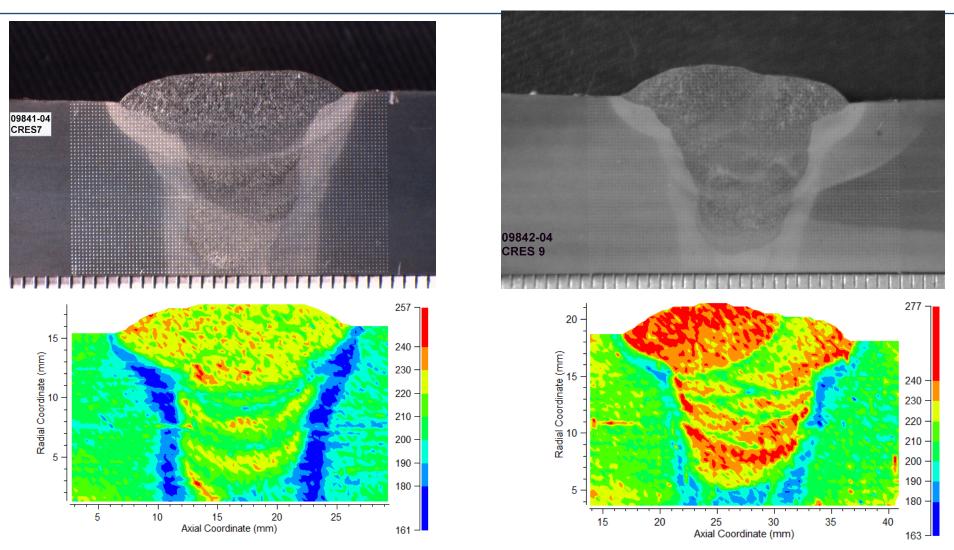
- High priority having "sound welds"
  - Prevention, detection, and repair of flaws
- Nominal requirements
  - Weld strength, ≥ specified minimum strength of the pipe
  - Ductility
- Not considered
  - Connection between qualification requirements and field service condition (expected stress level) in rigorous engineering sense
    - However, workmanship historically has worked well for the industry.

#### ECA

- Add toughness to the requirement of main body (e.g., CTOD)
- Flaw acceptance criteria are related to field service conditions
  - Considerations for field service conditions may not be adequate.
  - Conservatism in other areas makes up the deficiency; ECA welds are of good quality.

# **Contrasting Qualification Requirements with Factors Affecting Weld Performance**

| Factors Affecting Girth Wel    | Factors Addressed in API 1104 |            |
|--------------------------------|-------------------------------|------------|
| Pipe wall thickness            |                               | Mostly Yes |
| Pipe strain hardening capacity |                               | No         |
| Wold atropath mismatch         | YS mismatch                   | No         |
| Weld strength mismatch         | UTS mismatch                  | No         |
| HAZ strength (Softening)       |                               | No         |
|                                | Cap reinforcement             | Mostly No  |
| Weld profile                   | Misalignment                  | No         |
|                                | Bevel geometry                | Yes        |
| Weld flaw                      | Flaw type                     | Yes        |
| vveid liaw                     | Flaw dimensions               | Yes        |
| Toughness                      |                               | No         |
| Applied stress/strain          |                               | No         |



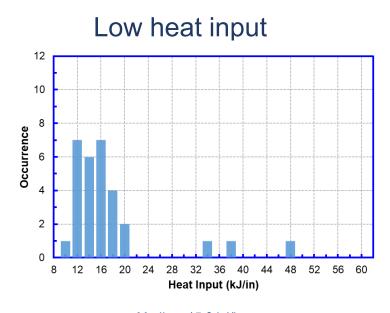

# Contribution of Current Requirements to Low Strain Tolerance

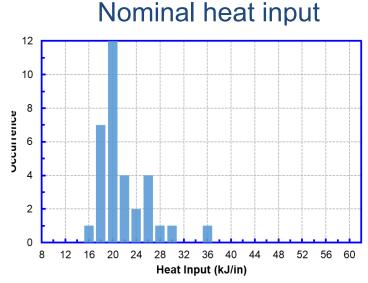
- Weak link between actual pipe strength and welding procedures requirements
  - Permit girth weld strength undermatching
- Heat input may have a wide range, affecting
  - Weld metal strength
  - Level and extent of HAZ softening

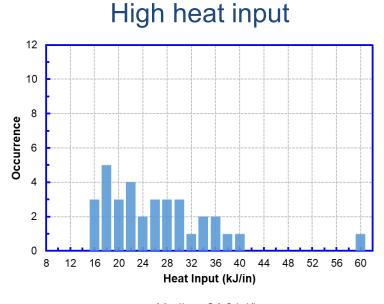


## Effects of Heat Input on Weld Metal and HAZ Strength




Same pipe and consumables (E6010 root, E81T8 hot, fill, and cap)


Ref: Jia, D., Wang, J., and Wang, Y.-Y., "Evaluation of Semi-Automatic FCAW-S Welding Processes and Implications for Pipe-line Girth Weld Integrity," PRCI project MAT-1-4, report catalog number PR-350-164500-R03, August 29, 2022.


10

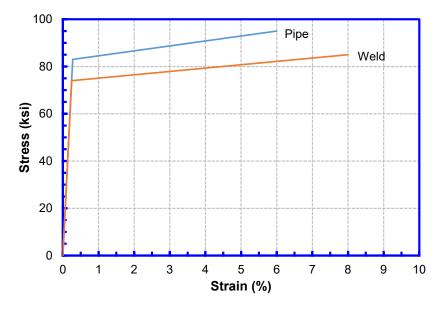
# Distribution of Heat Input from Manual Girth Weld

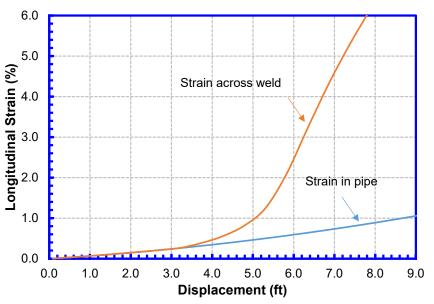
- Manual SMAW with cellulosic stick electrodes
- OD 24" WT 0.344"
- Recorded heat input per electrode, from hot, fill, and cap passes (E8010)








Median: 15.3 kJ/in Standard deviation: 8.1 kJ/in Median: 20.4 kJ/in Standard deviation: 4.3 kJ/in Median: 24.6 kJ/in Standard deviation: 8.8 kJ/in


# **Consequence of Weld Strength Undermatching**

- 30" OD, 0.375" WT pipe
- Nominally straight pipe segment
- Longitudinal strain demand generated in the pipe by the lateral ground movement

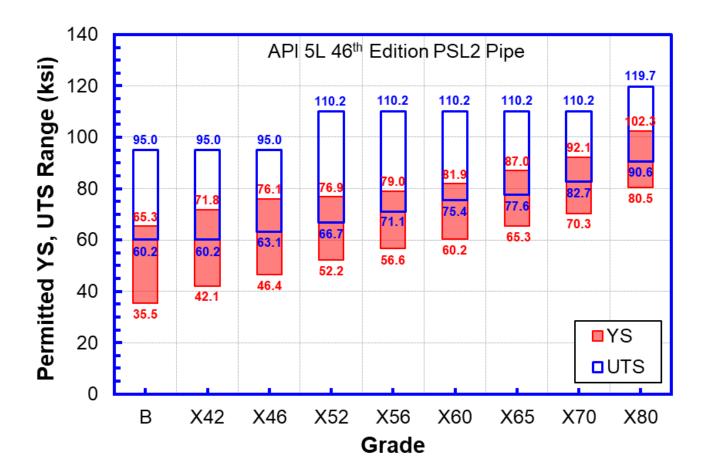
| <b>-</b> | 200 ft | <u></u> t | <b></b> |
|----------|--------|-----------|---------|

| Material | YS (ksi) | UTS (ksi) |  |
|----------|----------|-----------|--|
| Pipe     | 83       | 95        |  |
| Weld     | 74       | 85        |  |





With undermatching weld strength, girth weld starts to take on greater strain than the pipe at a pipe strain of approximately 0.25% (lateral displacement of 3.5 ft).




## Tensile Strain Capacity of Girth Welds vs. Field Conditions

- Tensile strain capacity of girth welds meeting the minimum requirements of standards: 0.25%-0.35%.
- Implications of this TSC
  - Adequate for most individual girth weld locations
  - Some locations can impose strains greater than this level
    - Geohazards
    - Non-geohazards
      - Construction stress
      - Crossings
      - Tie-in

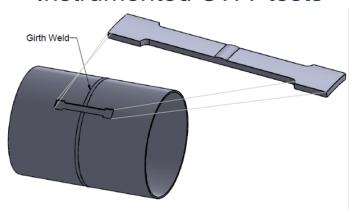
# Pipe Strength Has a Role in Weld Strength Undermatching

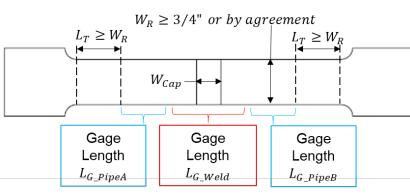
• The actual yield strength of a linepipe can be significantly higher than the specified minimum.



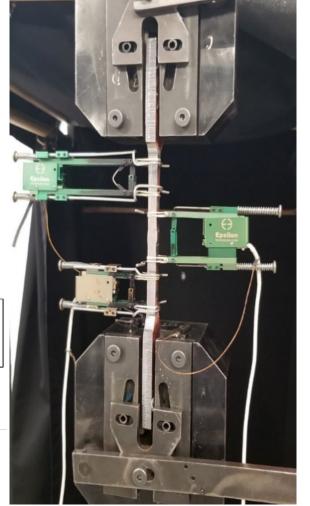


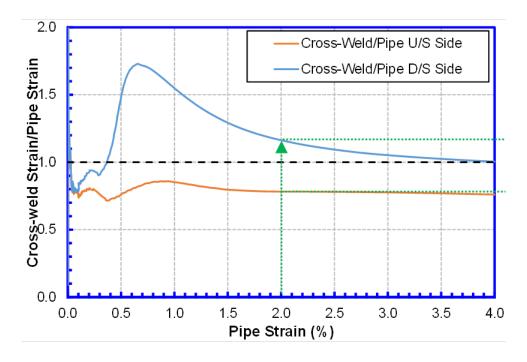
# Fundamentally Sound Procedure Qualification – Option 1


- Qualify a procedure to the actual strength (and other characteristics) of a pipe
  - The qualified procedure is good for pipe strength up to the qualified strength.
    - A qualified procedure is not tied to a grade, but the actual pipe strength.
  - No break in the weld area in cross-weld tensile test
  - Cons: Difficult to get out the current mindset of qualifying by a grade or a group of multiple grades



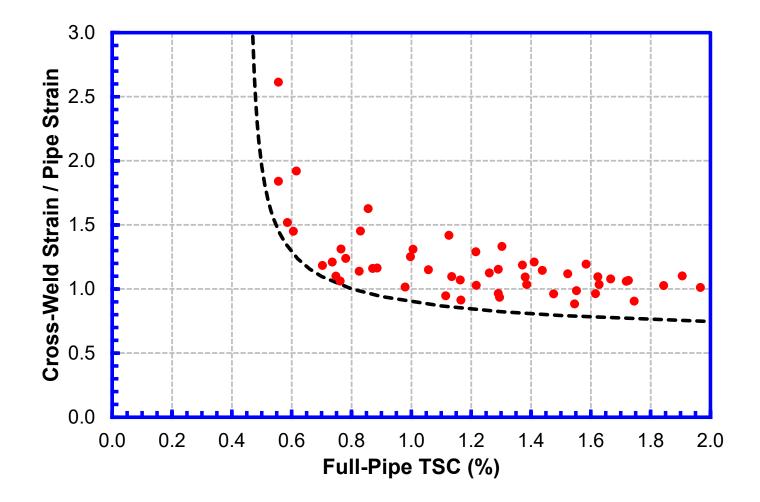

# Fundamentally Sound Procedure Qualification – Option 2


#### Linking qualification requirements with field service requirements


Instrumented CWT tests






$$W_{Cap} + 0.5$$
"  $\leq L_{G\_Weld} \leq W_{Cap} + 0.75$ "  
 $L_{G\_PipeA} = L_{G\_PipeB} \geq W_R$ 





## Linking Service Requirements with Qualification Req.

Relate target TSC with the maximum cross-weld strain ratio

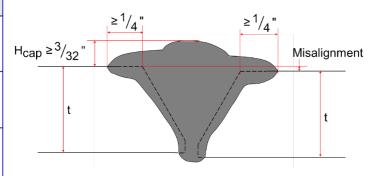




## Practical Approach to Procedure Qualification – Option 1

- Understand likely pipe strength for a grade
- Define welding processes and consumables
- Define range of heat input
- Run confirmation tests
  - Select right pipes
    - E.g., pipe strength being higher than 67-75 percentile of the possible distribution
  - Use high end heat input of the possible range
  - No failure in the weld area in cross-weld tensile tests

# **Practical Approach to Procedure Qualification – Option 2**


- Make weld(s)
  - Define heat input range
  - Use high end heat input of the range
- Measure weld strength (all weld metal tensile or hardness)
- Require weld UTS ≥ SMTS of Pipe + (3-5)×S.D.<sup>1</sup>
  - E.g., SD = 3 ksi or 20 MPa
  - <sup>1</sup>Note: this approach is similar to that in EPRG guidelines



### **Build a Process Selection Table, an Example**

#### • Selection of parameters: (1) tensile strength and (2) chemical composition

| Pipe Properties                                                         | Pipe UTS (ksi)                     | ≤ 94           |              | > 94         |                           |              |                           |
|-------------------------------------------------------------------------|------------------------------------|----------------|--------------|--------------|---------------------------|--------------|---------------------------|
|                                                                         | Pipe Carbon (%)                    | ≥ 0.050        | < 0.050      | ≥ 0.040      |                           | < 0.040      |                           |
|                                                                         | Pipe Pcm                           | ≥ 0.160        | < 0.160      | ≥ 0.140      |                           | < 0.140      |                           |
| Welding options, when the UTS first and then C% or Pcm condition is met | Filler Metal - Root Pass           | E8010 or E7010 |              |              |                           |              |                           |
|                                                                         | Filler Metal - Hot Pass            | E8010          |              |              |                           |              |                           |
|                                                                         | Filler Metal - Remaining<br>Passes | E8010          | E8010        | E8010        | E9018<br>E9045<br>E90T-XX | E8010        | E9018<br>E9045<br>E90T-XX |
|                                                                         | Cap Reinforcement                  | Regular        | Regular      | Wide width   | Regular                   | Wide width   | Regular                   |
|                                                                         | Target Heat Input*                 | 40 kJ/in max   | 30 kJ/in max | 30 kJ/in max | 40 kJ/in max              | 30 kJ/in max | 30 kJ/in max              |



<sup>\*</sup>Average heat input of all passes excluding root pass

# Implementation by Enbridge GTM – Option 1

- Implementation of Field Construction Specification Changes
  - Restrict and eliminate the use of fully cellulosic EXX10 consumables for X65 and X70 pipelines

Use of low-hydrogen welding consumables/processes with increased weld metal strength

- Provide alternative low-hydrogen welding methods:
- Minimum 90ksi filler material for all X65/X70 materials
- E8010 consumable for root pass welding (in-process/ong
- Monitor and apply lower heat inputs
- Use mechanized GMAW when appropriate





### **Concluding Remarks**

- Gaps in welding procedure qualification requirements have been identified.
- Approaches to improve the requirements have been proposed.
- Linkage to actual pipe properties and field service conditions is important to evaluate the adequacy of procedure qualification requirements.



#### Acknowledgement

#### Major sources of information

- X70 JIP (2017-2020)
  - Contractors: Microalloying, CRES, DNV GL, and Dynamic Risk; PI: Robin Gordon
  - Lead of sponsors: Steve Rapp
- PRCI project MATH-5-3B (2017-2022)
  - Contractor: CRES; PI: Yong-Yi Wang and Dan Jia
  - Project team lead: Steve Rapp
- CRES work with individual pipeline companies (2015 to now)
  - Incident investigations (US and overseas)
  - Develop mitigative measures (sometimes as a part of geohazards management)

#### Individuals

- Steve Rapp, David Johnson, David Horsley, Marie Quintana
- Reviewers of PRCI technical bulletin
- CRES staff: Jiawei Wang, Xiaotong Chen, Alex Wang, and Paul Pianca





Yong-Yi Wang CRES

614-419-2366

ywang@cres-americas.com