

Outline

- Introduction to Gas Pipeline Composite Repair Design
 - Background
 - Problem Statement
- Historical TC Energy's Pioneering Research Initiatives
 - Earlier Practices in TC Energy
 - Exploring New Horizons since 2018
- Enhancing Practices for Composite Repair Optimization
 - Sample Matrix and Associated Details
 - Summary of Results
- Conclusions & Overall Recommendations
- Q&A

Introduction to Gas Pipeline Composite Repair Design

What it is:

- It is a method of reinforcing damaged pipelines by applying layers of composite materials.
- Two types of repair systems:
 - Carbon fiber
 - · Glass fiber

Intended Applications:

Metal loss, deformations & structure reinforcement...

Advantages:

- More versatile for pipe shape/size
- Can be used on bends
- Simple, quick installation
- Can be used when OD changes

Disadvantages:

- Limited shelf-life (usually 2 years)
- Can degrade due to temperature changes
- Due to the temperature constraints during storage, surplus composite materials cannot be returned to the warehouse
- Limited research on long-term performance
- Gap in current QA/QC process for the long term

Introduction to Gas Pipeline Composite Repair Design

Risk mitigation vs the financial burden

- TC Energy extensively utilizes composite repair or reinforcing of pipelines
- Considerations on Cost and timeline Planning
- Composite design vs material consumption
 - ASME PCC-2-2022 on repair wrap layers and length
 - Conservatism vs the long-term performance
- ASME PCC-2-2022 Design Calculations for Metal Loss

NPS 42:

- 13 layers, 16kits/m
- 11 layers, 12kits/m

NPS 30:

- 13 layers, 12kits/m
- 11 layers, 8kits/m

Repair of 12.75-inch x 0.375-inch, Grade X42 pipe with 50% corrosion

ASME PCC-2 Design Equation	Design Basis	Design Equation	Minimum Calculated Composite Thickness
(3)	Stress-based	$t_{\min} = \frac{D}{2s} \cdot \left(\frac{E_s}{E_c}\right) \cdot (P - P_s)$	0.810 inches
(6)	Strain-based	$t_{\min} = \frac{1}{\varepsilon_c E_c} \cdot \left(\frac{PD}{2} - st_s\right)$	0.307 inches
(12)	Performance- based	$t_{\min} = \left(\frac{PD}{2} - t_s s\right) \left(\frac{1}{f s_{lt}}\right)$	0.138 inches

30 x 10⁶ psi (steel pipe elastic modulus)

4.5 x 10⁶ psi (composite laminate elastic modulus)

s 42,000 psi (pipe SMYS, or Specified Minimum Yield Strength)

1,778 psi (MAOP, design pressure of 72% SMYS)

980 psig (50% of failure pressure based on Modified B31G criteria)

t 0.375 inches (pipeline nominal wall thickness)

t_s 0.188 inches (50% corroded wall thickness)

0.25% (allowable long-term composite strain from ASME PCC-2, Table 4)

0.5 (Service "design" factor from ASME PCC-2, Table 5)

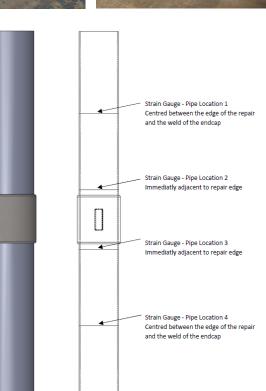
50,000 psi (long-term composite strength based on 1,000-hour testing, ASME PCC-2, Appendix V

Historical TC Energy's Pioneering Research Initiatives

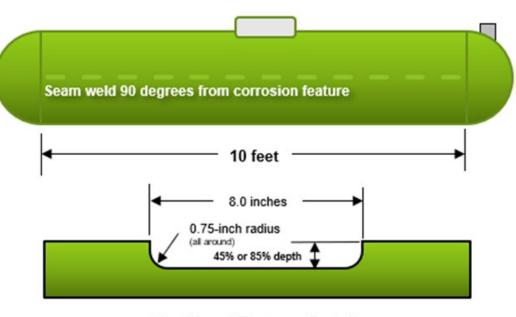
Earlier Practices in TC Energy

- Clock spring repair -1990's
- Composite Reinforced Line Pipe (CRLP) 2000's

- ASME B31G effective area Method for metal loss re-enforcement
 - Rather than using the conservative peak metal loss depth (Barlow's formula) design
 - The concept of using the effective area burst pressure with fewer layers
 - The composite repairs were installed at


Pipe	Pipe Diameter (NPS)	WT (mm)	Maximum Pressure (kPa)	Relative Failure Location	Comments
1	10	9.27	36,833	Pipe Body – End A	Repair Experienced Some Cracking and Tearing
2	20	6.35	12,957	Pipe Body – End B	Burst Along Seam Weld
3	20	9.53	22,421	Pipe Body – End A	Burst Along Seam Weld
4	36	9.53	14,182	Pipe Body – End A	Burst Along Seam Weld
5	36	12.70	19,142	Pipe Body – End B	Burst Along Seam Weld

Historical TC Energy's Pioneering Research Initiatives


- Exploring New Horizons since 2018
 - Composite Reinforcement of Severe Corrosion and Leaking Defects
 - Improved design method for a full-scale test program on 85% deep corrosion leaking features
 - The study showed that CSNRI Atlas could reinforce severe and through-wall corrosion metal loss features on small-sized (<NPS12) gas pipelines
 - The field trial to repair significant corrosion features (>80%NWT) on an NPS6, NWT =3.18mm pipe
 - ✓ B sleeve or Cut out limitation
 - ✓ As a four-year temporary repair while implementing a robust four-year monitoring program to confirm the suitability of the CSNRI Atlas repair system to be considered a permanent repair for severe metal loss defects in gas pipelines

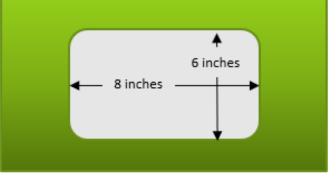
		NDE Feature Details								
GWD	ILI Feature ID	AWT (mm)	As- Found ID	Axial Distance from GWD (m)	Orientation Start (°)	Axial Length (mm)	Field- Measured Depth (%)	Failure Pressure (Effective Area) (kPa)	SF at MOP	Remaining Wall Thickness Using Laser Scan and pit gauge (mm)
3270	CLS 3431	3.2	CLS-015	14.02	116.1	282.76	80.94	8154.4	0.97	0.61
3480	CLS 4500	3.1	CLS-005	4.2	146.35	44.24	85.16	10,610.8	1.27	0.46

- Elevated Temperature Composite Repair Design & Testing Key concepts
 - 24-inch x 0.250-inch (6.4 mm), Grade X52 pipe.
 - Testing CSNRI's AtlasTM.
 - Metal loss depths range from 45% to 85 %nwt, including
 - a larger general corrosion feature
 - a narrow longitudinal groove corrosion feature.
 - Cyclic pressure testing
 - with a maximum pressure of 80% SMYS at 60°C (140°F),
 - with a pressure range of 40% SMYS ($\Delta P = 40\%$ to 80% SMYS).
 - One test will be conducted at room temperature.

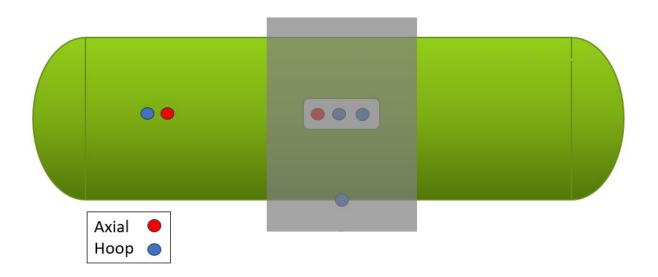
Machined Feature Details

Elevated Temperature Composite Repair Design & Testing

Sample Matrix and Associated Details


Sample No.	Design Equation and Resulting Layer Count	Test Temp.	Defect Geometry	Corrosion Depth	Est. Minutes Cycles to Failure
CS-GRV-45HT-1	ASME PCC-2 Eq. 12 12 layers	60°C (140°F)	8-inch x 1-inch	45%	348,347
CS-GRV-45RT-2	ASME PCC-2 Eq. 12 12 layers	25°C (77°F)	8-inch x 1-inch	45%	348,347
CS-GRV-85HT-3	ASME PCC-2 Eq. 12 20 layers	60°C (140°F)	8-inch x 1-inch	85%	76,638
CS-GRV-85HT-4	ASME PCC-2 Eq. 16 42 layers	60°C (140°F)	8-inch x 1-inch	85%	1,568,811
CS-GEN-45HT-5	Custom Modified B31G 4 layers	60°C (140°F)	8-inch x 6-inch	45%	98,795
CS-GEN-45HT-6	ASME PCC-2 Eq. 12 12 layers	60°C (140°F)	8-inch x 6-inch	45%	348,347
CS-GEN-85HT-7	Custom Modified B31G 12 layers	60°C (140°F)	8-inch x 6-inch	85%	12,713
CS-GEN-85HT-8	ASME PCC-2 Eq. 12 20 layers	60°C (140°F)	8-inch x 6-inch	85%	76,638

8-inch (I) x 1-inch (w), 45% or 85% deep groove corrosion feature



8-inch (I) x 6-inch (w), 45% or 85% deep corrosion feature

Elevated Temperature Composite Repair Design & Testing

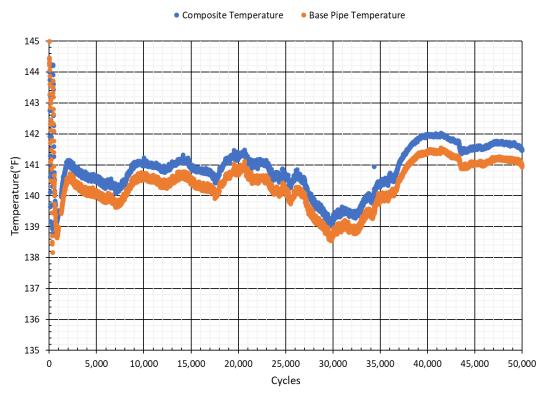
Sample Strain Gauge

Sample in Cycle Test Setup Before Testing

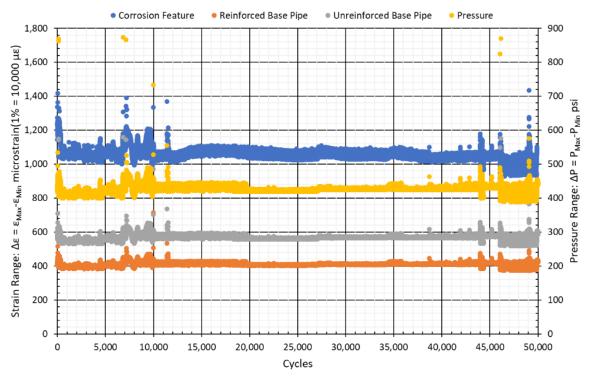
Elevated Temperature Composite Repair Design & Testing

Summary of Results

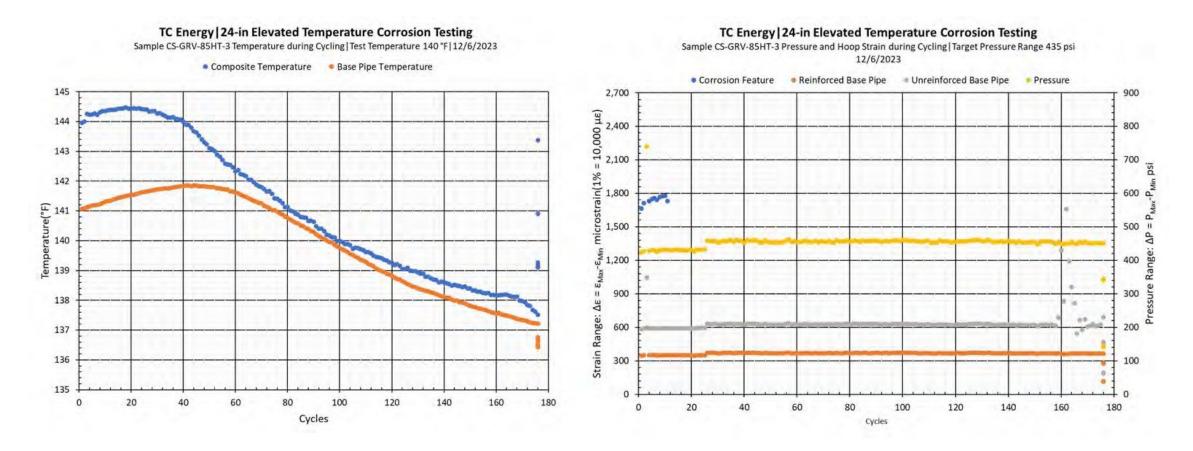
Sample No.	Design Equation and Resulting Layer Count	Estimated Cycles to Failure	Actual Cycles to Failure	Burst Pressure (Psi)	Failure
CS-GRV-45HT-1	ASME PCC-2 Eq. 12 12 layers	348,347	50,000*	1,490	Outside wrap
CS-GRV-45RT-2	ASME PCC-2 Eq. 12 12 layers	348,347	50,000*	1,609	Outside wrap
CS-GRV-85HT-3	ASME PCC-2 Eq. 12 20 layers	76,638	176**	N/A	Inside wrap
CS-GRV-85HT-4	ASME PCC-2 Eq. 16 42 layers	1,568,811	1,250	N/A	Inside wrap
CS-GEN-45HT-5	Custom Modified B31G 4 layers	98,795	38,431*	1,497	Outside wrap
CS-GEN-45HT-6	ASME PCC-2 Eq. 12 12 layers	348,347	50,000*	1,499	Outside wrap
CS-GEN-85HT-7	Custom Modified B31G 12 layers	12,713	106	N/A	Inside wrap
CS-GEN-85HT-8	ASME PCC-2 Eq. 12 20 layers	76,638	50,000*	1,499	Outside wrap
N.L. I.					


^{*}Sample completed runout condition without failure in repair or pipe. | **Failed at 25 cycles.

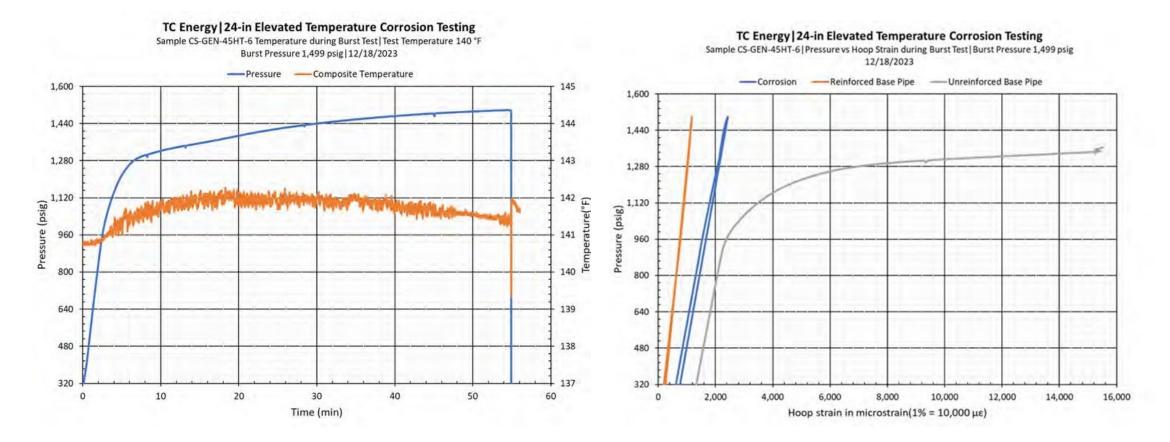
Elevated Temperature Composite Repair Design & Testing


TC Energy 24-in Elevated Temperature Corrosion Testing

Sample CS-GEN-45HT-6 Temperature during Cycling | Test Temperature 140 °F | 12/8/2023 to 12/19/2023


TC Energy 24-in Elevated Temperature Corrosion Testing

Sample CS-GRV-45HT-1 Pressure and Hoop Strain during Cycling | Target Pressure Range 435 psi 11/17/2023 to 11/29/2023



Elevated Temperature Composite Repair Design & Testing

Elevated Temperature Composite Repair Design & Testing

Conclusions & Overall Recommendations

- Neither ASME B31G nor ASME PCC-2 consider the effects of corrosion width, and certainly neither considers the effects of cyclic pressure loading.
- Failure mechanism for the severe groove corrosion features (i.e., depth of 85%) is predominantly high strain
- Geometric limitation needs to be established for accepting when composite materials can be used to reinforce groove corrosion features, likely based on a combination of corrosion depth and width.
- Effects of temperature cannot be discounted when considering composite repairs.

Deli Yu

CGOE&P Pipe Integrity, TC Energy

Phone: 587 439 5946

deli_yu@tcenergy.com