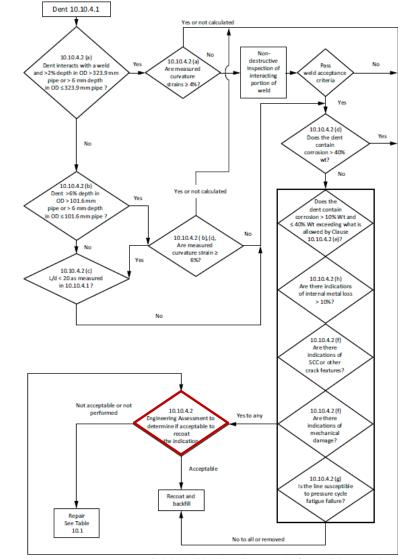


Pipeline Research Council International

ECA Is Allowed for Dent Assessment by CSA Z662

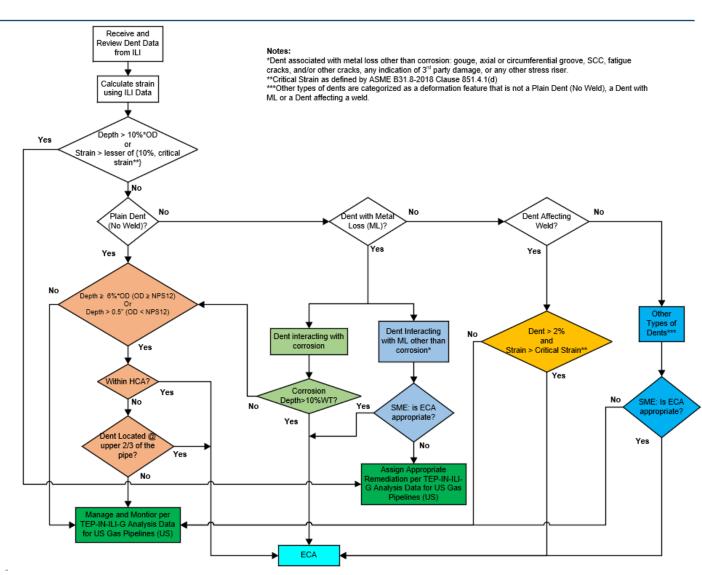

10.10.4.2

There is a commentary available for this Clause.

The following dents shall be considered to be defects unless determined by an engineering assessment to be acceptable:

- a) dents that interact with a mill or field weld and exceed(s)
 - a depth of 6 mm in pipe 323.9 mm OD or smaller, unless their measured curvature strain is less than 4% and the interacting portion of the weld passes nondestructive inspection criteria; or
 - 2% of the outside diameter in pipe larger than 323.9 mm OD, unless their measured curvature strain is less than 4% and the interacting portion of the weld passes nondestructive inspection criteria;
- dents that are located on the pipe body and exceed a depth of 6 mm in pipe 101.6 mm OD or smaller or 6% of the outside diameter in pipe larger than 101.6 mm OD, unless their measured curvature strain is less than 6%;
- dents with a length to depth ratio (L/d) less than 20, unless their measured curvature strain is less than 6%;
- d) dents that contain corroded areas with a depth greater than 40% of the nominal wall thickness of the pipe;
- dents that contain corroded areas having a depth greater than 10%, up to and including 40%, of the nominal wall thickness of the pipe and a depth and length that exceed the maximum allowable longitudinal extent determined as specified in ASME B31G (Level 0 evaluation);
- f) dents that contain stress concentrators (gouges, grooves, arc burns, or cracks);
- g) dents that are susceptible to pressure cycle fatigue failure; and
- h) dents that contain any internal metal loss greater than 10% of the nominal wall thickness.

Note: Figure 10.2 shows the process for determining whether a dent should be considered a defect.



ECA Is Allowed by Special Permit

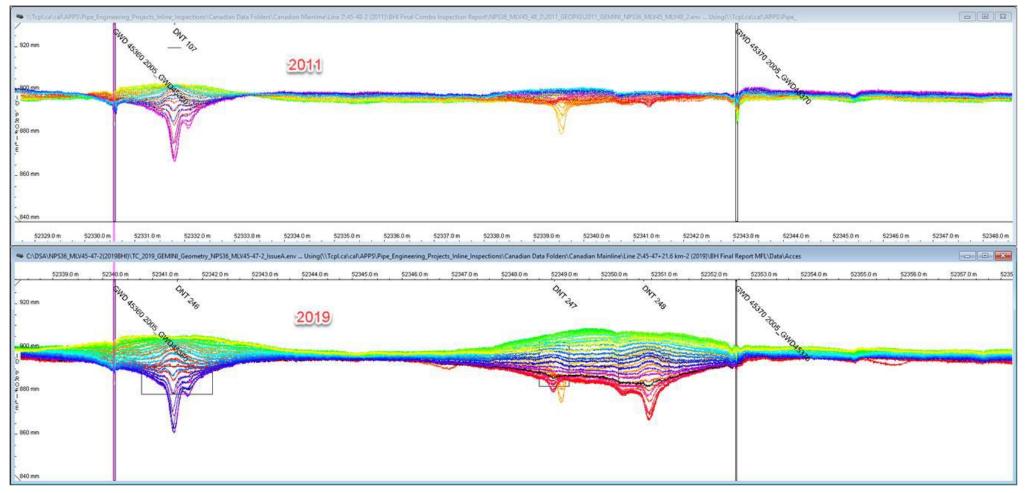
Table 1						
Dent type	Critical Dents that Require Action	ECA an Option				
Plain Dent	Dent of depth > 6% Outside Diameter (OD) or dent strain level exceeding: i. Dent with strain > 6% limit (ASME B31.8, 2018 Edition) or ii. Strain Limit Damage (SLD) or Ductile Failure Damage Indicator (DFDI) > 0.6 (per API 1183, IBR Edition or 1st Edition, 2020, if not IBR)	YES				
Dent Associated with Corrosion	 i. Dent depth of > 6% OD with corrosion of any depth** or ii. Dent of depth ≤ 6% OD with corrosion depth that is more than 15% of the pipe wall thickness. ** 	YES				
Dent Associated with Metal Loss other than Corrosion	Dent associated with metal loss other than corrosion: gouge, axial or circumferential groove, SCC, fatigue cracks, and/ or other cracks.**					
Dent Affecting Weld (Girth Weld, Longitudinal Seam Weld or Spiral Seam Weld)	Dent of any depth affecting pipe with: Low Frequency Electric Resistance Welded (LF-ERW), Electric Flash Welded (EFW), Lap Welded, or Longitudinal Joint Factor < 1.0.*					
	Dent of depth > 2% OD affecting other types of weld seams, see above, or girth welds with strain level exceeding 4% (ASME B31.8, 2018 Edition).	YES				
Skewed and/or Multiple Dent Peaks	Any complex dent geometry identified by Operator/CGT or ILI vendor such as skewed dent, two or multi-peak deformations.	YES				

ECA Is Allowed by 49 CFR 192.712(c)

- (c) Dents and other mechanical damage. To evaluate dents and other mechanical damage that could result in a stress riser or other integrity impact, an operator must develop a procedure and perform an engineering critical assessment as follows:
- (1) Identify and evaluate potential threats to the pipe ..., external loading, fatigue, cracking, and corrosion.
- (2) ...
- (11) An operator using an engineering critical assessment procedure,

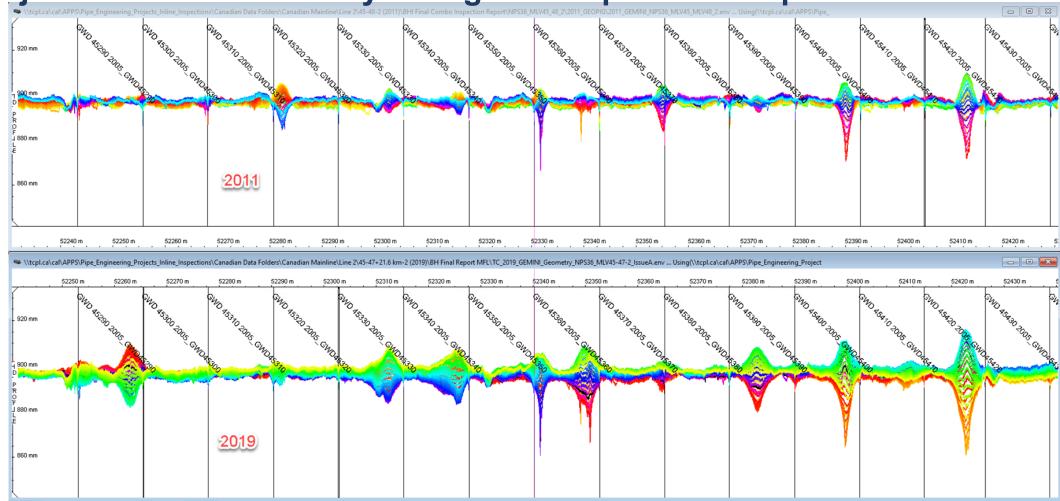
Objectives

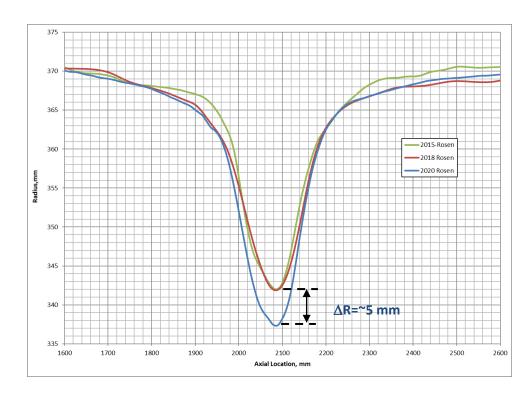
- Share the best practices developed and implemented by TC Energy
- Demonstrate the procedure and work accepted by regulators

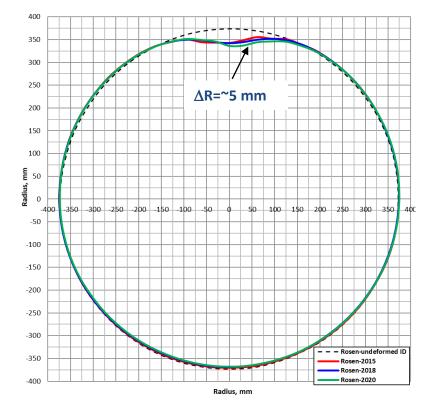

Key Components in the Process of ECA

- Review multiple caliper inspections and check any changes in depth and shape
- Calculate the curvature-based strain and compare changes in strain
- Review multiple ILI (e.g., MFL, EMAT, Caliper) signal data for coincident damage
- Assessment of dents with ILI-called metal loss
- Assess IMU data (strain) to identify external loads
- FEA for stress/strain, DFDI and SLD
- FEA for fatigue analysis

Example of Review Multiple Caliper Inspections

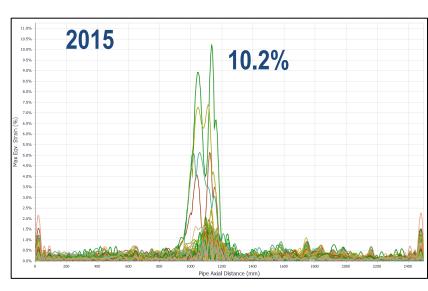

Objective: overview of any changes in depth and shape

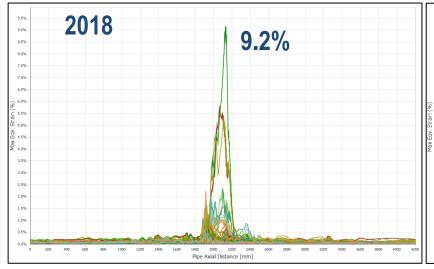

Example of Review Multiple Caliper Inspections

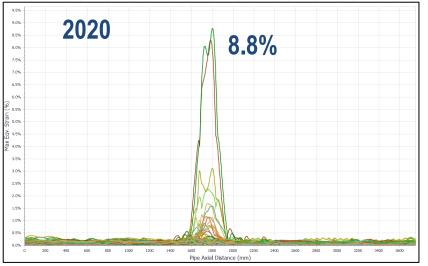

Objective: overview of any changes in depth and shape

Detailed Comparison of Dent Profiles

Objective: detailed review of changes in depth and shape by comparing profiles

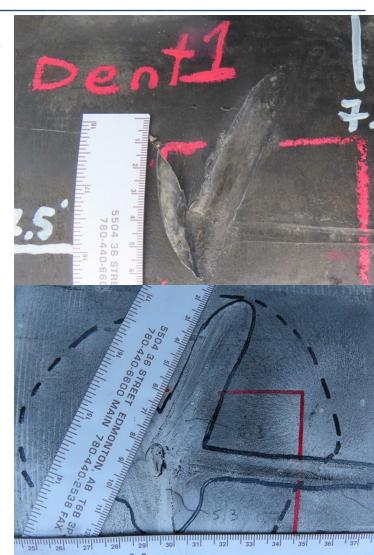




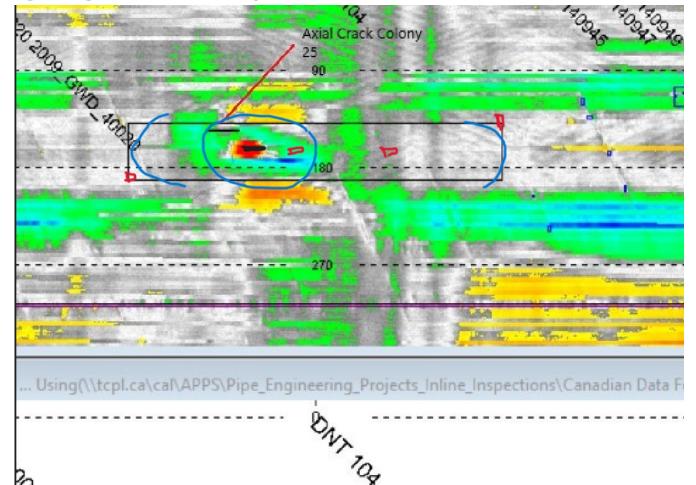

Minor change in the profile with $\Delta R \le 0.2\%OD$ (within tool tolerance of 0.2%OD)

Calculate the Curvature-based Strain per ASME B31.8

Objective: check the changes in strains and evaluate susceptibility of cracking using DFDI criterion

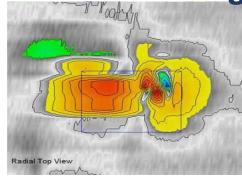

small variation of dent strain possibly due to different noise level in the caliber data

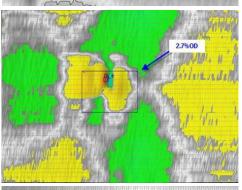
Example of Review Multiple ILI (e.g., MFL, EMAT, Caliper) Signal Data for Coincident Damage

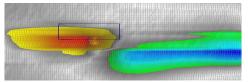

- Objective: demonstrate the effectiveness of using multiple datasets
- Example:
 - 2020 ILI: top side dent 1.75%OD with 28%wt ML
 - No signal indication from 2012 MFL/Caliper and 2015 EMAT/AFD
 - MS expansion done in 2017 near this location
 - Very likely to be MD created between 2015 and 2020
 - MD was confirmed in the ditch

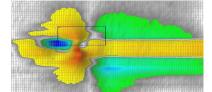
Assessment of Dents with ILI-called Metal Loss

Objective: review ILI signal to distinguish <u>ILI-called</u> metal loss features (corrosion vs gouge vs crack)

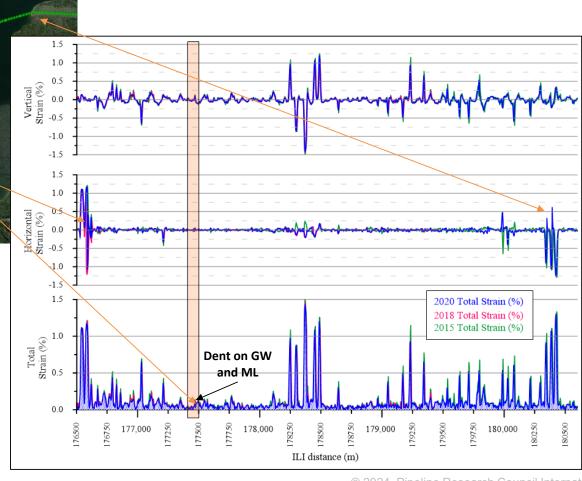





Assessment of Dents with ILI-called Metal Loss

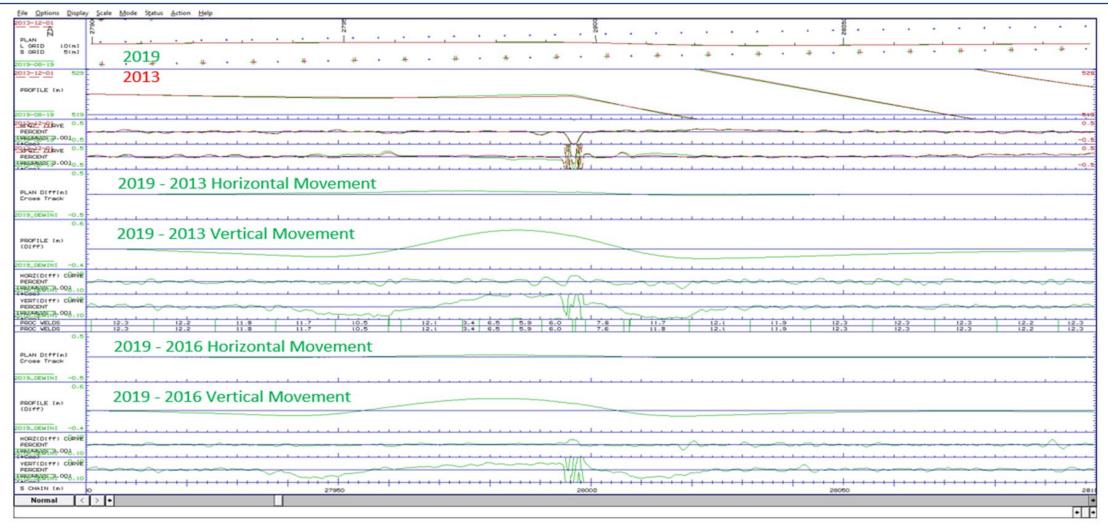

Objective: validation of ILI assessment using dig data

- ILI
 - o Depth: 4.1%OD
 - No interactive anomaly reported
 - o Bottom of the pipe
 - **DFDI = 0.8**
- · In-ditch finding
 - o Dent associated with through-wall crack
- ILI
 - o Depth: 2.7%OD
 - o 76%wt ext. ML
 - o Bottom of the pipe
 - **DFDI** = 1.0
- In-ditch finding
 - o Dent associated with branched nonthrough-wall crack
- ILI
 - o Depth: 3%OD
 - No interactive anomaly reported
 - o Top of the pipe
 - **DFDI** = 1.7
- In-ditch finding
 - o Dent associated with MD



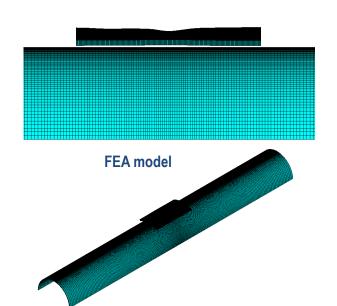
Assess IMU Data

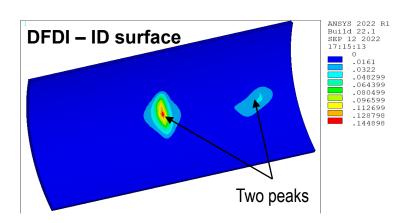
Objective: identify external loads at the dent location

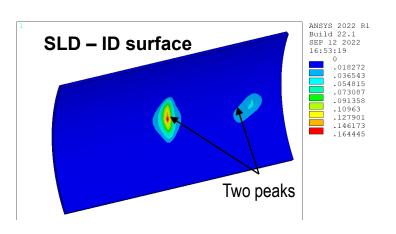


- IMU strain is comparable between the ILI runs
- No significant change in IMU strain at the dent location, indicating no evidence of pipe movement (no large external load).

15

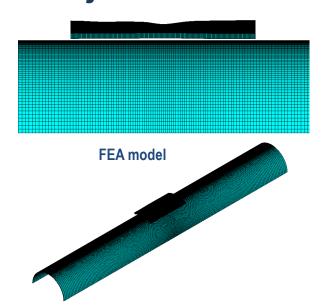

Assess IMU Data

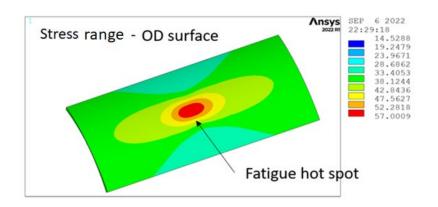


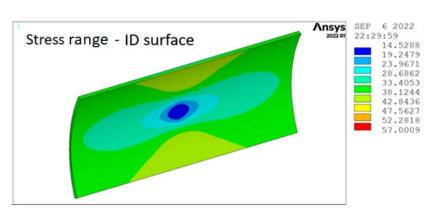


FEA for Strain Assessment

Objective: evaluate Stress/Strain, DFDI and SLD


Condition	Maximum Plastic	Maximum DFDI				Maximum SLD
Condition	Equivalent Strain	$\varepsilon_0 = 0.3$	$\varepsilon_0 = 0.4$	$\varepsilon_0 = 0.5$	$\varepsilon_0 = 0.6$	Maximum SLD
Dent depth = 2.5%	5.27%	0.19	0.14	0.12	0.10	0.16
Dent depth = 2.7% (w/ tool tolerance)	5.32%	0.20	0.15	0.12	0.10	0.17


DFDI < 0.6 and SLD < 1, indicating it is not susceptible to cracking.



FEA for Fatigue Life Assessment

Objective: evaluate the fatigue life

Methodology	Number of cycles to failure	Equivalent number of cycles for pressure range (0 to MAOP per year)	Predicted Fatigue Life (years)	Fatigue Life after applying safety factor of 2 (years)
API 1156	6992		22,555	11,277
PRCI Fatigue Life Equation	8110	0.31	26,161	13,080

Summary

- A general ECA process was developed to comply with regulations
- Some best practices were described and illustrated using real life examples
 - Usage of all available datasets (including ILI, geospatial data, etc.)
 - Expertise of SMEs
 - Effectiveness (safety and economy)
- Continuous improvements by including new R&D outcomes

Rick Wang and Shenwei Zhang
Integrity Engineer, TC Energy

4039204612

Rick_wang@tcenergy.com Shenwei_zhang@tcenergy.com