

Pipeline Research Council International

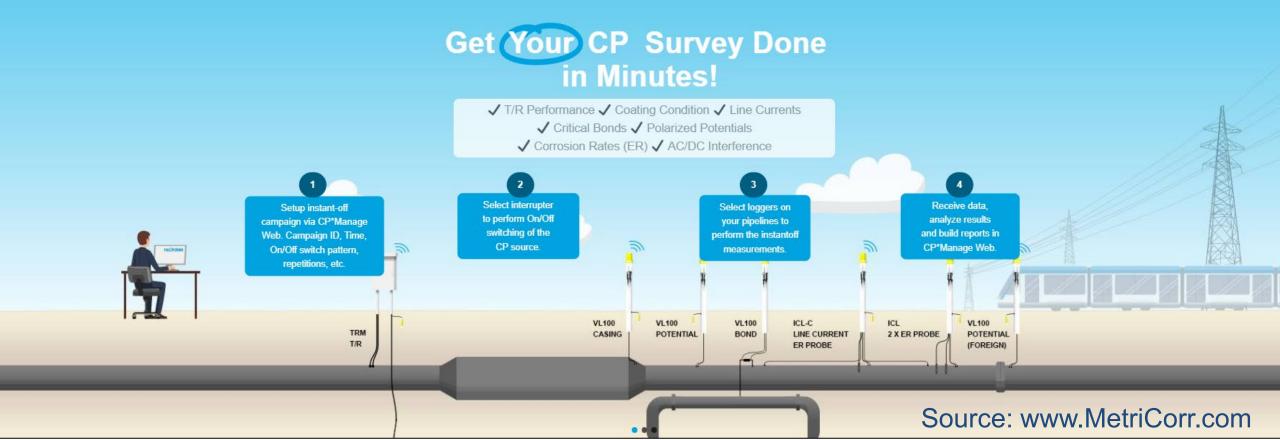
PRCI EC-08-11 Overview – Scope & Objectives

1) Extensive field-based research to marry well-established manual pipe current measurements with high-resolution remote monitoring technology:

- What is the optimum (maximum) interval(s) for pipe current sensor remote monitoring units (RMUs)?
- What are the pipe current monitoring requirements Instrumentation? Data capture? Analytics?

2) Ultimately:

- Practical guidance to industry on implementation of real-time pipe current monitoring
- Improved pipeline corrosion protection surveillance and overall pipeline reliability/safety
- Faster detection and resolution of corrosion control threats
- Cost effective enhancement to overall Integrated External Corrosion Management (IECM) program
- Reduction if not elimination of traditional periodic rectifier checks and annual test station surveys
- Reduced O&M and regulatory compliance costs


3) Deliverables:

- Research report
- Guide manual
- Excel-based life-cycle cost calculator and user's manual
- Industry outreach to share research results

The "Pipeline of Things": 24/7/365 Real-Time Surveillance

- ✓ Can cost-effective remote monitoring reduce/replace periodic rectifier checks and annual CP test station surveys?
- ✓ Can it reduce or even replace close interval surveys?
- ✓ Will regulatory agencies such as PHMSA accept this alternative??

Research Report: Real-Time Pipe Current Monitoring

Catalog No. R-229-203604-R01

LEADING PIPELINE RESEARCH

Pipeline CP Monitoring Using Real Time Current Measurement

Project number EC-08-11

Contract PR229-203604

Contents

1 - Executive Summary	1
2 - Introduction	2
3 - Value to Members.	3
4 - Approach	4
4.1 – General	4
4.2 - Key Questions to be Answered	4
4.3 - "Test Bed" Pipelines	5
4.4 - Pipe Current Measurements	5
4.5 - Remote Monitoring Instrumentation.	7
4.6 - Field Research: Remote Monitoring During Controlled Upset Events	9
4.7 - Field Research: Results.	11
4.8 - DC Rail Transit Applications.	17
5 - Framework for Real-Time Monitoring Guide Manual	18
6 – Gap Analysis	19
7 - Recommendations.	19
8 - Conclusions	20
9 – Acknowledgement	21
10 - Referenced Publications.	21
Appendix A - RMU Product Information	A-1
Appendix B - Pipeline 1 Current/Potential Profiles (7)	B-1
Appendix C - Pipeline 2 Current/Potential Profiles (14)	
Appendix D - Pipeline 3 Current/Potential Profiles (18)	D-1
Appendix E - Pipeline 4 Current/Potential Profiles (13)	E-1
Appendix F - Pipeline 5 Current/Potential Profiles (13)	F-1
Appendix G - Pipeline 6 Current/Potential Profiles (15)	G-1
Appendix H - RMU Time Traces During Tests (18)	H-1
Appendix I - Extended Duration RMU Time Traces (9)	I-1

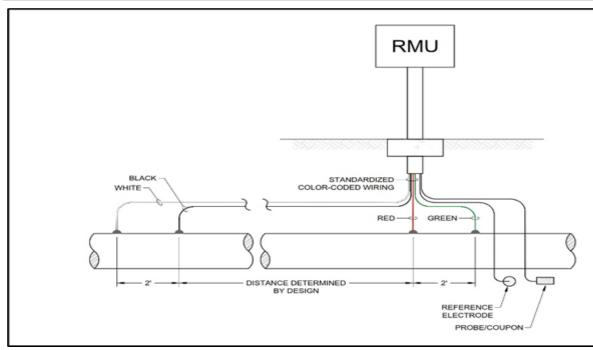
Guide Manual for Real-Time Pipe Current Monitoring

Contents

Figure 1 - Sample Pipe Current & Pipe-to-Soil Potential vs. Distance Profile	4
Figure 2 – Average Distance	4
Figure 3 - Average Change in Pipe Current	5
Figure 4 - Histogram - Detectable Change in Pipe Current	t
Figure 5 - Sensitivity of Pipe Current Change vs. Pipe Potential Change	<i>6</i>
Figure 6 - Pipe Current Span RMU	
Figure 7 - Current Shunt RMU at Pipe Insulating Flange	8
Figure 8 – Pipe Span Resistance	
Figure 9 – Pipe Span Voltage	
Figure 10 – Pipe Span Resistance Data Form	1
Figure 11 - Pipe Span Resistance Data Form (with formulae)	12
Figure 12 – Pipe Current Distribution	12
Figure 13 - Normalized Pipe Current Pickup Per Mile	
Figure 14 - Normalized Pipe Current Pickup Per Square Foot of Pipe Surface	10
Figure 15 - Normalized Pipe Current Pickup Per Square Foot of Pipe Surface	10
Figure 16 – Solar-Powered RMU in Fiberglass Junction Box	20
Figure 17 – Extended Monitoring, 5 Days – Pipeline No. 1	2
Figure 18 – Extended Monitoring, 7 Weeks – Pipeline No. 2	2
Figure 19 – Extended Monitoring, 2 Months – Pipeline No. 5	2
Figure 20 - RMU Locations, less than 18 miles between rectifiers	2
Figure 21 – RMU Locations, 18 to 30 miles between rectifiers	2
Figure 22 – "The Smart Pipe"	20
Figure 23 - Dynamic Stray Current Monitoring, 5-second sample rate	2
Figure 24 - Dynamic Stray Current Monitoring, 10-minute sample rate	2
Table 1 – Nominal Interval Between Pipe Current Sensors	
Table 2 – Pipe Current Span Resistance and Conversion Factor	

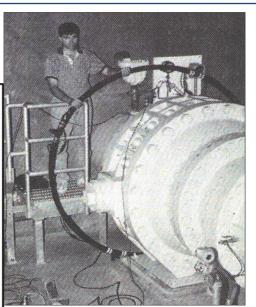
Life-Cycle Cost Calculator for Remote Monitoring Program

	PIPELINE/PROJECT NAME:							EXISTING OR PLANNED:	Planned	LENGTH (Miles):	_	100
	PREPARED BY:								D	ATE PREPARED:	:	
	TOTAL NO. OF PIPELINE RMUs:	12		NO. OF TE	ST STATIONS	:	100	N	IO. OF CP CURI	RENT SOURCES:	:	4
				UNIT	COSTS				EXTEND	ED COSTS		
					Engineering			Engineeri		Engineering/S		Total
			Material/		/Start-	To	otal Unit	Material/Equi		tart-	E	xtended
REF. NO.	DESCRIPTION		Equipment				Cost	pment	Installation	Up/Other		Cost
		1) RN	1U INITIAL CO								,	
1	RMU Type 1 - AC/DC Line Current/Potential/Corrosion Probe	12	\$ 5,000	\$ 2,000	\$ 500		7,500	\$ 60,000	\$ 24,000	\$ 6,000	\$	90,000
2	RMU Type 2 - AC/DC Potential/Current Density/Corrosion Probe					\$	-	\$ -	\$ -	\$ -	\$	-
3	RMU Type 3 - AC/DC Potential/Current Density					\$	-	\$ -	\$ -	\$ -	\$	-
4	RMU Type 4 - AC/DC Potential					\$	-	\$ -	\$ -	\$ -	\$	-
5						\$	-	\$ -	\$ -	\$ -	\$	-
6						\$	-	\$ -	\$ -	\$ -	\$	-
7						\$	-	\$ -	\$ -	\$ -	\$	-
8						\$	-	\$ -	\$ -	\$ -	\$	-
9						\$	-	\$ -	\$ -	\$ -	\$	-
	1) SUBTOTAL - RMU INITIAL COSTS:	12						\$ 60,000	\$ 24,000	\$ 6,000	\$	90,000
			2) OTI	HER INITIAL C	OSTS							
10	RMU Design	1			\$ 8,000	\$	8,000			\$ 8,000	\$	8,000
11	Prepaid Subscription/Connectivity Charge (1st year)	12			\$ 120	\$	120			\$ 1,440	\$	1,440
12						\$	-					
13						\$	-					
14						\$	-					
15						\$	-					
16						\$	-			\$ -	\$	-
2) SUBTOTAL - OTHER INITIAL COSTS: \$ 9,440								\$	9,440			
	3) INITI	AL COST SA	AVINGS (main	ly applicable	for new pipe	line (constructi	on)				
17	Elimination of "standard" test stations	30	200	200	100	\$	500	\$ (6,000)	\$ (6,000)	\$ (3,000)	\$	(15,000)
18	Elimination of "typical" output voltage/current RMUs at CP current sources	4	2500	200	100	\$	2,800	\$ (10,000)	\$ (800)	\$ (400)	\$	(11,200)
19						\$	-	\$ -	\$ -	\$ -	\$	-
20						\$	-	\$ -	\$ -	\$ -	\$	-
21						\$	-	\$ -	\$ -	\$ -	\$	-
22						\$	-	\$ -	\$ -	\$ -	\$	-
23						Ś	-	\$ -	\$ -	\$ -	Ś	-
3) SUBTOTAL - INITIAL COST SAVINGS: \$										· \$	(26,200)	
										-	73,240	
										I Cost Per RMU	-	6,103
								Average Init		er Pipeline Mile	_	732

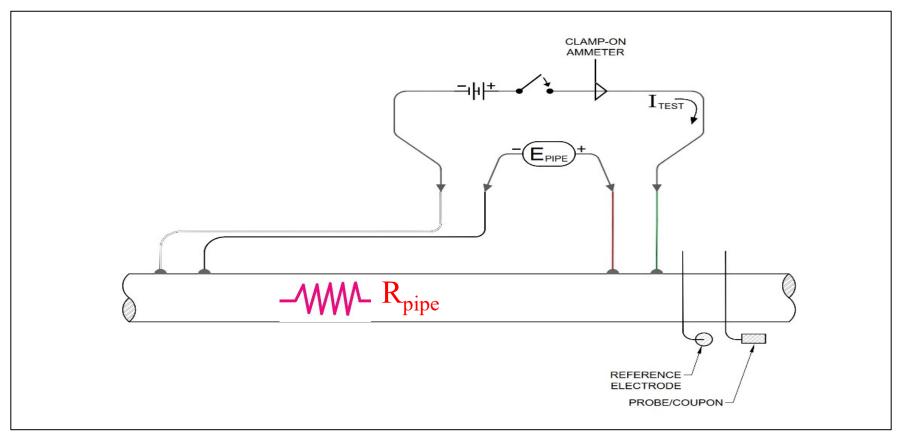

Pipeline/Project Name							
Prepared By							
Date Prepared	0	1/00/00					
Existing or Planned Pipeline	ı	Planned					
Length (Miles)		100					
Total No. of Pipeline RMUs		12					
No. of Test Stations		100					
No. of CP Current Sources		4					
Annual Interest Rate (%)		3%					
Economic Life (Years)		30					
					PF	RESENT	
		TOTAL	PRESENT VALUE PER		VAI	LUE PER	
	F	RESENT			PIPELINE		
DESCRIPTION		VALUE		RMU		MILE	
RMU Initial Cost	\$	73,240	\$	6,103	\$	732	
RMU Total Life-Cycle Cost (Initial & O&M)	\$	187,460	\$	15,620	\$	1,875	
Annualized RMU O&M Cost (per year)	\$	3,807	\$	317	\$	38	
Traditional CP Monitoring Life-Cycle Cost	\$	418,774			\$	4,188	
Annualized Traditional CP Monitoring Costs (per year)	\$	13,959			\$	140	
Payback Period - RMUs vs. Traditional CP Monitoring			5.2	Years			
"Return on Investment" - RMUs vs. Traditional CP Monitoring	123%						
Cost Avoidance - Total Life-Cycle Cost	\$	756,897			\$	7,569	
Annualized Cost Avoidance (per year)	\$	25,230			\$	252	
Payback Period - RMUs vs. Avoidance Cost	2.9 Years						
"Return on Investment" - RMUs vs. Cost Avoidance	304%						

INPUT:
RMUs, CP monitoring, "avoidance costs"

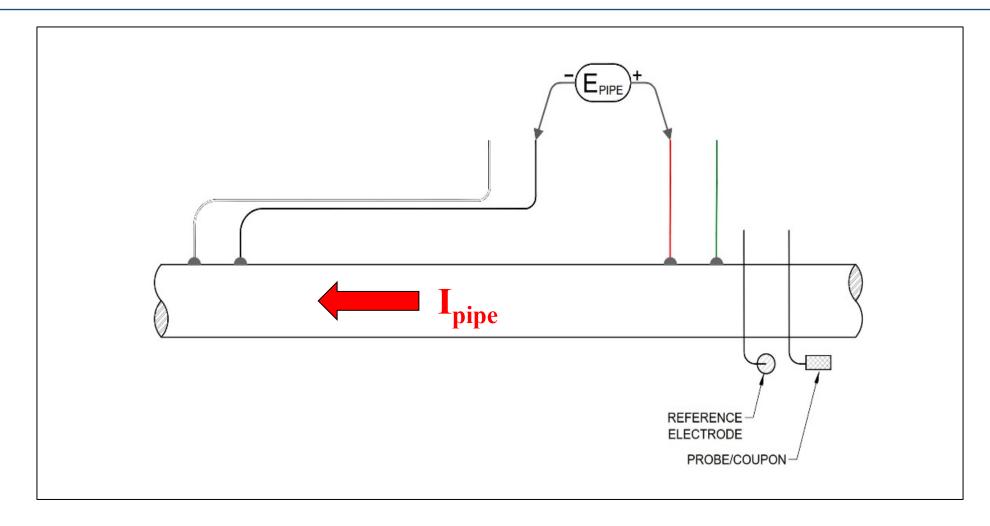
OUTPUT: Present Value \$, RMU payback period, RMU return on investment (ROI)


How does one measure/monitor pipe current?

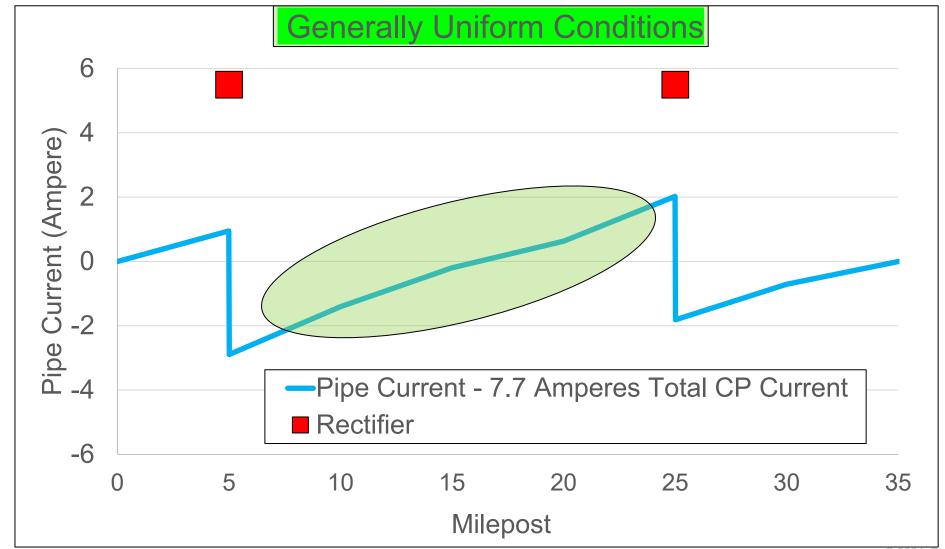
Pipe Current Span (typically 100+ feet)


Calibrated Current
Shunt in Bond Cable

Clamp-On Ammeter Around Pipe or Bond Cable

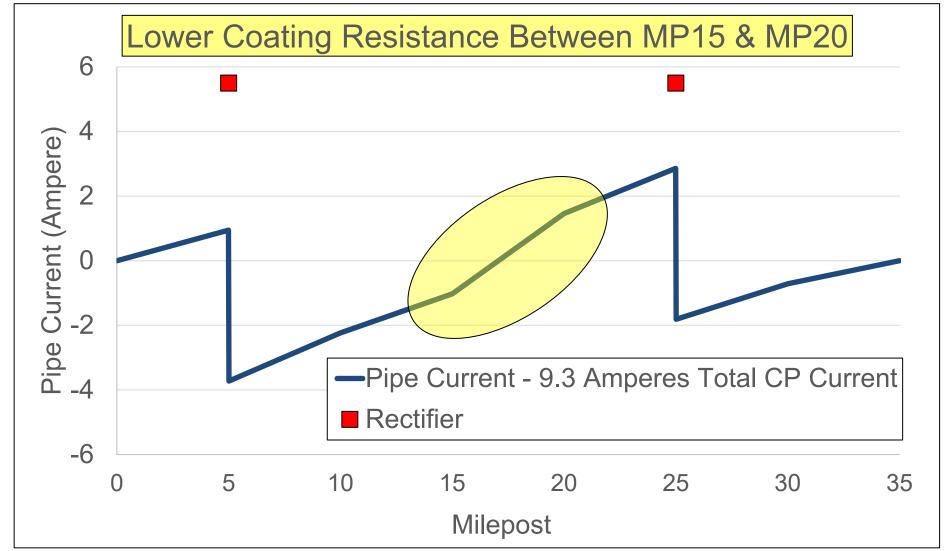


Pipe Current Span Resistance Measurements (Ohm's Law)

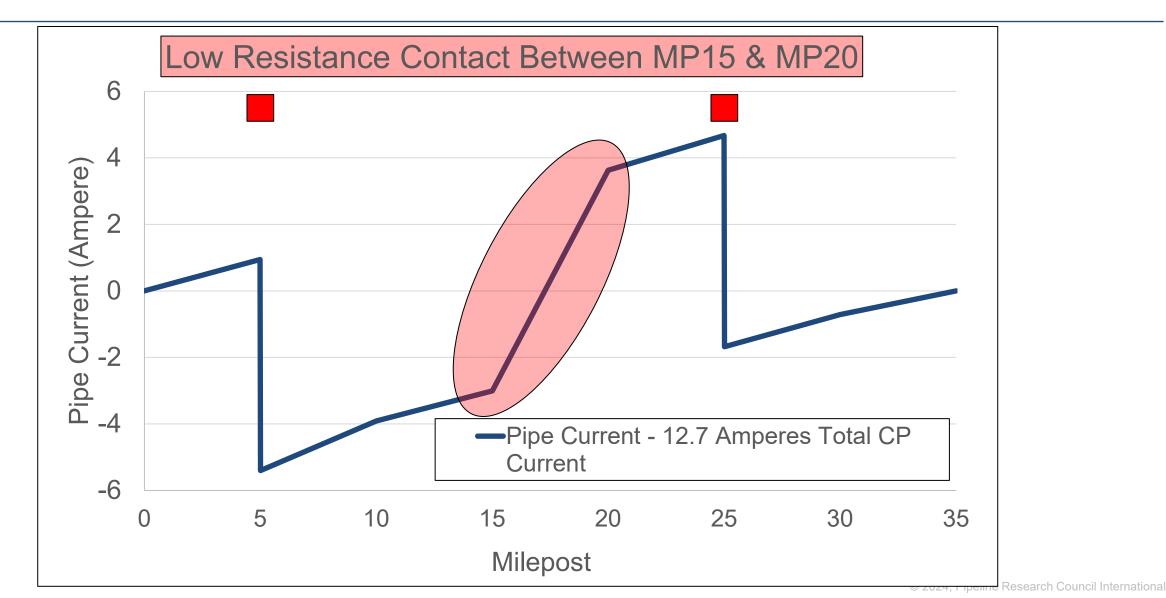


$$R_{pipe} \text{ (milliohm)} = [E_{pipe-on} \text{ (mV)} - E_{pipe-off} \text{ (mV)}] / I_{test} \text{ (A)}$$
$$C_f \text{ (A/mV)} = 1 / R_{pipe}$$

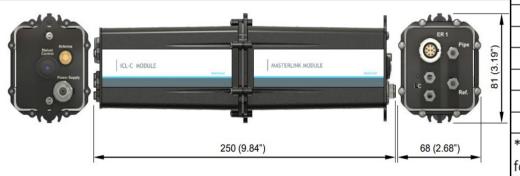
Pipe Span Voltage Converted to Line Current (Ohm's Law)



Cathodic Protection Current Distribution (1 of 3)



Cathodic Protection Current Distribution (2 of 3)


12

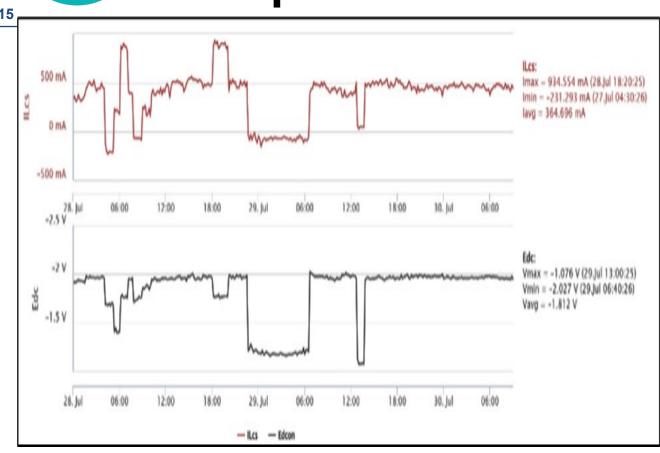
Cathodic Protection Current Distribution (3 of 3)

Extensive Field-Based Research – 6 pipelines, 253 miles

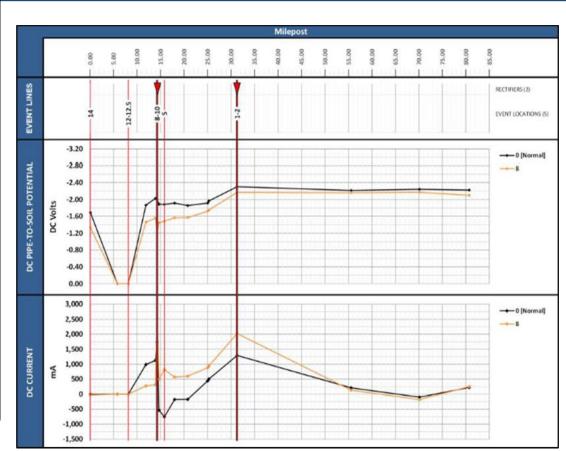
- 6 pipelines, 253 miles total, assorted coating quality and pipe-to-earth resistance
- 72 temporary pipe current/potential RMU locations across the 6 pipelines average spacing = 3.3 miles, maximum = 13.5 miles
 - Precision RMU used with 0.1 microvolt resolution (1-3 mA pipe current resolution)
 - Data sampling rate = 1 measurement set (pipe potential & current) every 10 minutes
- 74 total simulated upset conditions

	Pipeline No.	State	Coating	Diameter (Inch)	Evaluation Section - From Milepost	Evaluation Section - To Milepost	Evaluation Length (Miles)	Cathodic Protection Current Demand Per Mile (A/Mile)	Average CP Current Density (μΑ/Sq.Ft)
	1	OK	FBE	16	29.8	72.4	42.6	0.12	6
1	2	PA	FBE	12	0.1	31.1	31.0	0.08	5
	3	TX, LA	X-Tru-Coat	12	121.2	181.0	59.8	1.0	61
3.19	4	LA	Coal Tar	22	83.8	126.1	42.3	1.7	56
81	5	TX	FBE	8	0.0	8.2	8.2	2.3*	207*
	6	IL	FBE / Coal Tar	36/22	15.9	50.3	68.9	0.10	1
			Т	OTAL			252.8		-

^{*} Pipeline 5 has multiple interconnects and bonds. CP current demand and current density values shown do not account for the interconnects & bonds, i.e. values for pipeline alone would be less than shown.

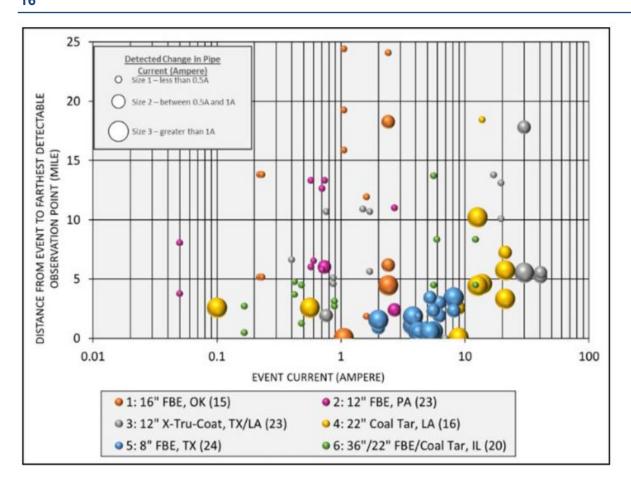


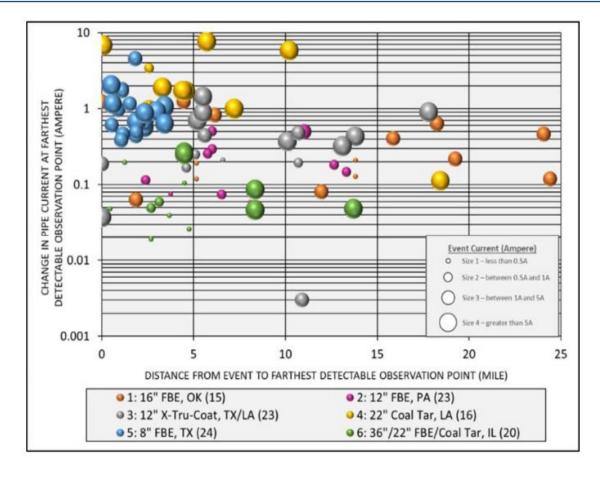
Simulated Upset Conditions – 74 total


- 1) Interference from a nearby cathodic protection system
- 2) Temporarily shorting the pipe to electrical ground
- 3) Temporarily shorting the pipe to a casing
- 4) Localized coating damage, simulated by temporarily connecting the pipe to a probe rod driven into the ground a few feet
- 5) Loss of cathodic protection for a portion of the pipeline system
- 6) Temporarily turning off one or more cathodic protection rectifiers associated with the pipeline being evaluated, individually and together

Representative Field Data and Results

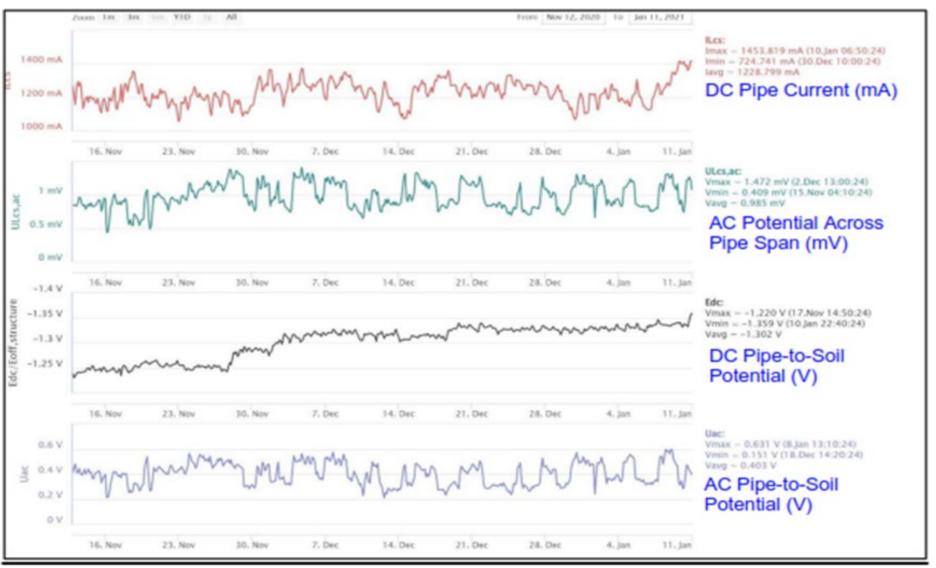
DC Pipe Current & Potential vs. Time – 3 days before, during, and after assorted simulations




DC Pipe Current & Potential vs. Distance – 85 miles "Normal" vs. simulated event

Simulated event readily observed 15+ miles away

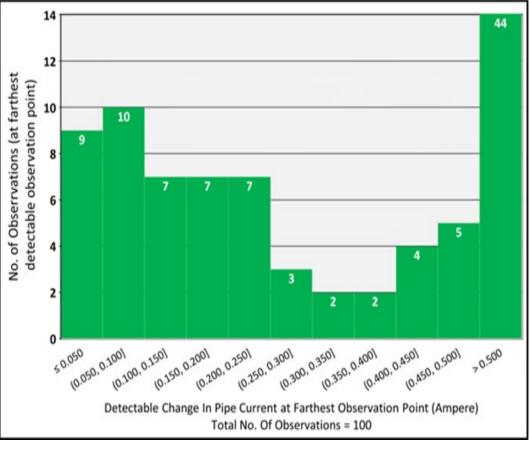
Lots and lots of data to analyze!



Observation distance (miles) vs. controlled event current (amperes)

Pipe current change (amperes) vs. distance from controlled event (miles)

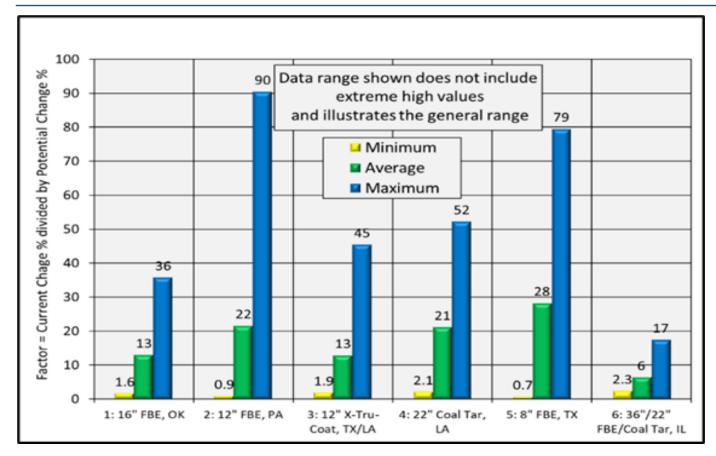
"Normal" doesn't necessarily mean "constant"


2-month monitoring period

18

Key Findings (1 of 2)

Detectable Change in Pipe Current miles away (average values)


Histogram

Detectable Change in Pipe Current miles away

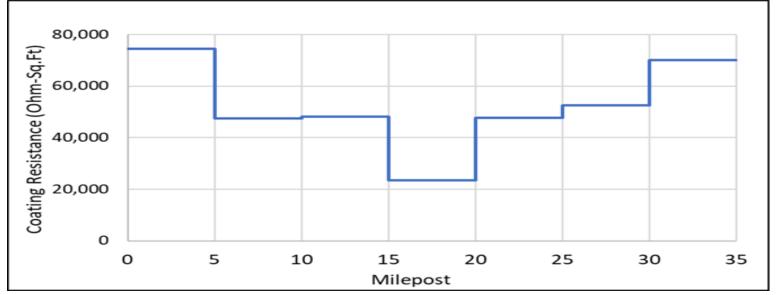
(all pipelines combined)

19

Key Findings (2 of 2)

Pipe current monitoring is consistently more sensitive than pipe-to-soil potential at a given observation point

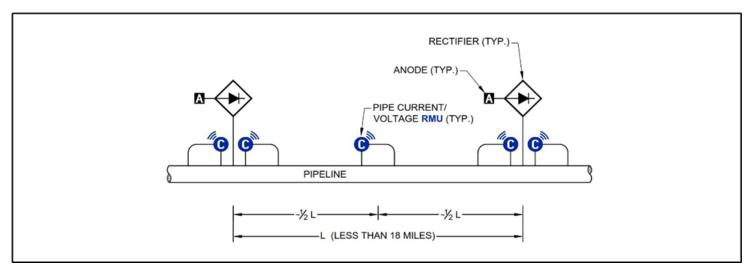

Nominal Interval Between Pipe Current Sensors to Detect < 0.5 Ampere Upset/Change High quality coating, electrically isolated Modest quality coating, electrically isolated Poor quality coating, electrically grounded, and or multiple interconnects Page 10 Miles, Possibly Further 4-5 Miles 4-5 Miles Maximum


General guidance on pipe current RMU spacing (pipeline-specific RMU plan should be tailor-made based on known and potential future corrosion risks, acknowledging dynamic conditions & changes over time, following guidelines in manual)

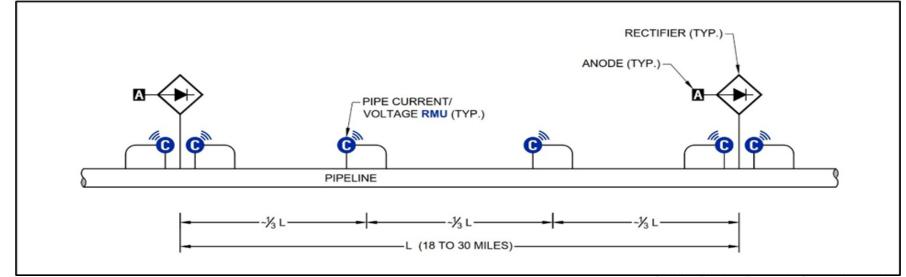
Trending data over distance and time

Normalized
Pipe Current
Pickup
(µA/Sq.Ft.)

Normalized Pipe
Coating
Resistance
(Ohm/Sq.Ft.)

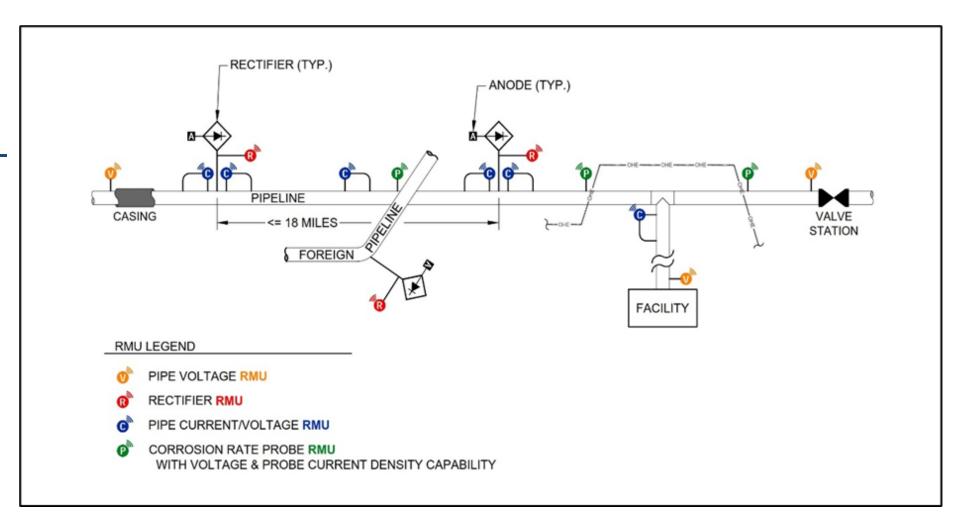


21

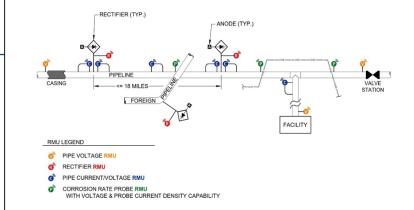

Selecting Pipe Current RMU Locations

(minimum locations determined by CP current source "zones")

Scenario #1: CP current sources <18 miles apart = 3 pipe current RMUs between sources



Scenario #2: CP current sources 18-30 miles apart = 4 pipe current RMUs between sources



"The Smart Pipe"

RMU/sensor type(s) and locations should be tailor-made based on known and potential future corrosion risks, acknowledging dynamic conditions & changes over time

"The Smart Pipe"

- Continuous real-time pipe current measurements should be an integral part of a CP remote monitoring program
- Small pipe currents and small changes in pipe current are readily detected with commercially available high-resolution instrumentation
- Pipe current monitoring is more sensitive to upsets when compared to pipe-to-soil potential monitoring alone
- 4) Remote monitoring is cost effective and applicable to existing and new pipelines
- 5) Machine learning and artificial intelligence can enhance the smart pipe monitoring process

Dale Lindemuth, P.E.

Principal Engineer / Corrpro

(832)474-5361

dlindemuth@aegion.com