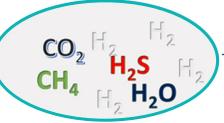
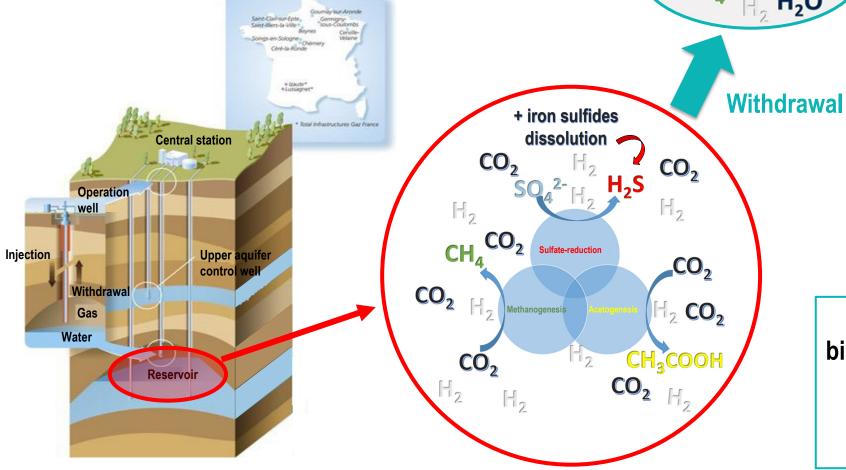


storengy

Pipeline Research Council International


Conclusion

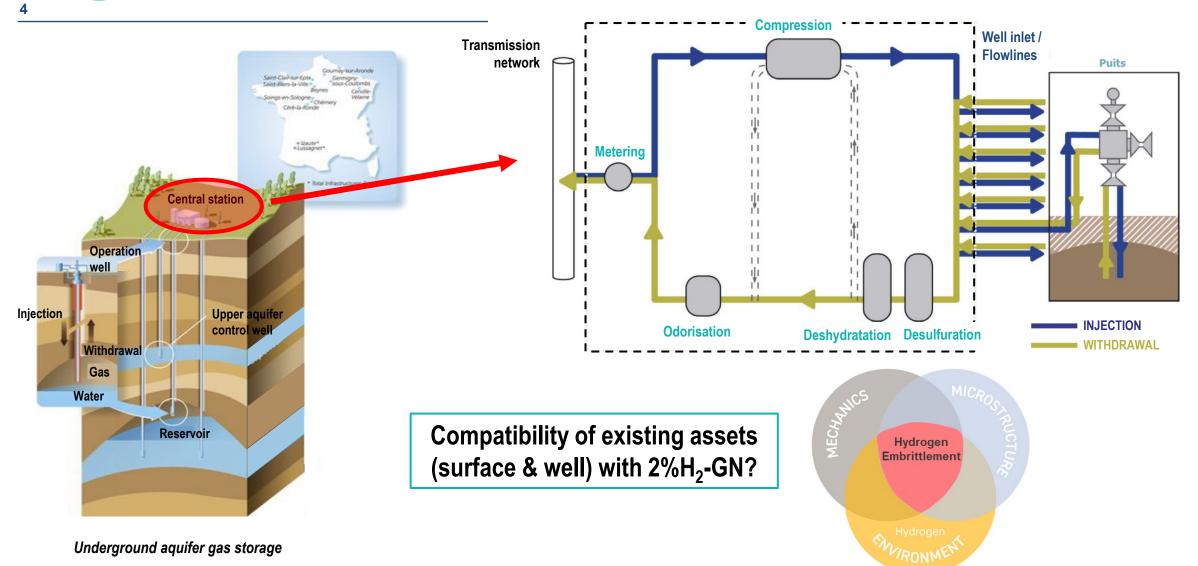

5

Context State of the art **Materials and environmental tests** 3 Water vapor and H₂S effects on the hydrogen embrittlement UGS & Gas Quality

- Desulfuration
- Deshydratation

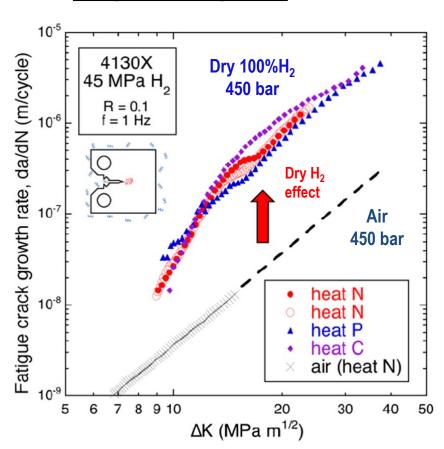
Injection into the transmission network

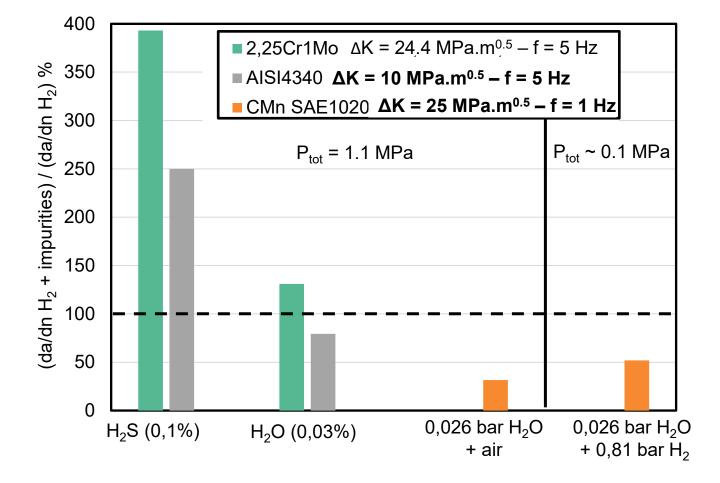
NG + 2% H ₂	Injection	Withdrawal
Nitrogen	1.03%	1.03%
CO ₂	1.06%	1.06%
Ethane (C ₂ H ₆)	4.66%	4.66%
Propane (C ₃ H ₈)	0.745%	0.745%
Isobutane	0.402%	0.402%
Methane (CH ₄)	Balance	Balance
H_2	2%	2%
THT	24 mg/Nm ³	24 mg/Nm ³
H ₂ S	3.9 mg/Nm ³	30 mg/Nm ³
H ₂ O	< 46 mg/Nm ³	< 1000 mg/Nm ³
O_2	< 10 ppm	< 10 ppm


Geological H₂ storage leads to biogeochemical reactions that can significantly affect the fluids composition and thus the gas phase equilibria involved

Subsurface reactions

UGS Description


Central station

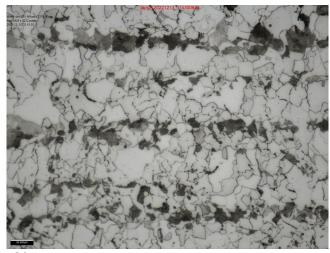


Context Litterature Materials and tests conditions Water vapor and H2S effects on the hydrogen embrittlement Conclusion

Litterature Review on the effect of H20 & H2S (scarce...)

Fatigue crack growth

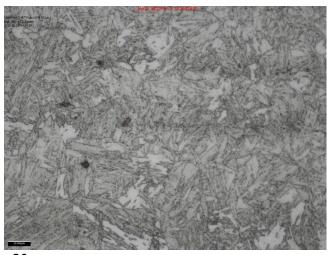
- S. Fukuyama, Pressure Vessel Technology, 1990 H. G. Nelson, The Metallurgical Society of AIME, 1976
- K. Yokogawa, World Energy Network, 1996.


Context State of the art **Materials and tests conditions** 3 Water vapor and H₂S effects on the hydrogen embrittlement Conclusion

Selected UGS Materials

Seamless L360NB pipe (2009 – new) sour service

⊥ Transverse direction

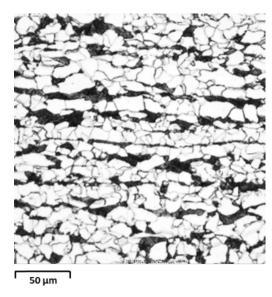

20 µm

Rp _{0,2} , MPa	UTS, MPa
394	538

Ferrite + perlite microstructure

Seamless N80Q tubing (2020 – new) sour service

⊥ Transverse direction


20 µm

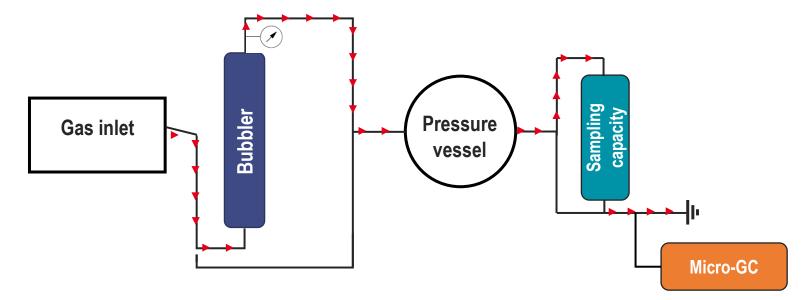
Rp _{0,2} , MPa	UTS, MPa
674	761

Tempered martensite microstructure

Vintage X52 pipe (1969) non sour service

⊥ Transverse direction

Rp _{0,2} , MPa	UTS, MPa
430	610


Ferrite + perlite microstructure with sulfure, alumina and oxydes inclusions

Testing environments

$$P_{\text{max}} = 85 \text{ bar}$$

Wet environments (water saturated gas)			Dry environment	
NG	NG + 25%H ₂	NG + 27 ppmv H ₂ S	NG + 25%H ₂ + 27 ppmv H ₂ S	NG + 25%H ₂
P _{H2} = 0 bar	P _{H2} = 21,25 bar	P _{H2} = 0 bar	P _{H2} = 21,25 bar	P _{H2} = 21,25 bar

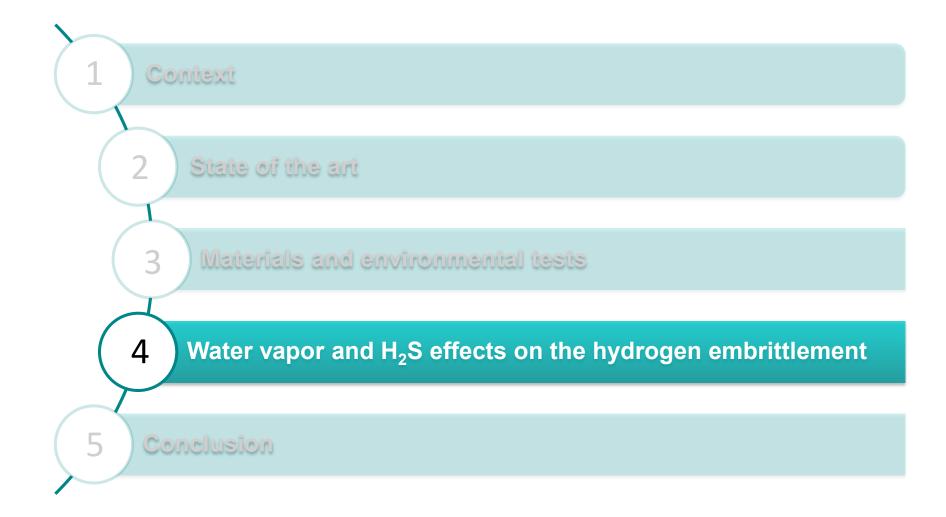
- \square In the presence of H₂S, continuous gas flow ensures a constant H₂S content (20-25 ppmv)
- \square The gas is saturated with H₂O using a bubbler (300 mg/Nm³)

10

Experimental methods

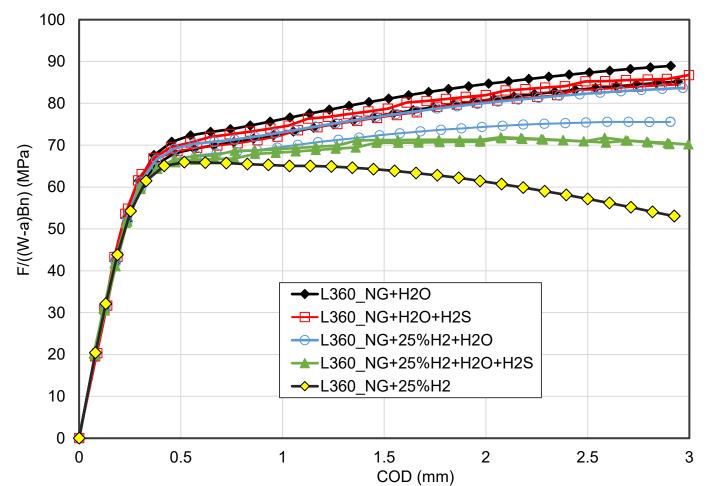
Fracture toughness

- **ASTM E1820**
- CT specimens with side grooves
 - Thickness 10 mm: L360
 - Thickness 6 mm: N80Q
- TL extraction direction
- Precrack length:
 - $a_0 = 23 \text{ mm}$
 - $a_0/W = 0.575$
- **Test ending parameter:**
 - $COD_{final} = 3 \text{ mm}$


Fatigue crack growth

- ASTM E647
- Ratio load: R = 0.1
- Frequency: f = 1 Hz
- CT specimens
 - Thickness 10 mm: L360
 - Thickness 6 mm: N80Q
- TL extraction direction
- **Precracking parameters:**
 - $a_0 = 23 \text{ mm}$
 - $\Delta K_{\text{final}} = 10 \text{ MPa.m}^{0,5}$

Thermodesorption


- **Bruker Galileo G8**
- Charging conditions (3 h):
 - As-received
 - NG + 25%H2
 - NG + 25%H2 + H2S
 - NG + 25%H2 + H2S + H2O

Fracture toughness: L360NB

Wet NG Wet NG + H₂S (27 ppmv)

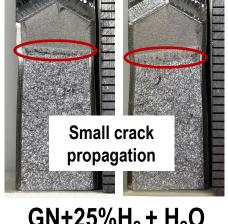
Wet 25%H₂

Wet $25\%H_2 + H_2S$ (27 ppmv)

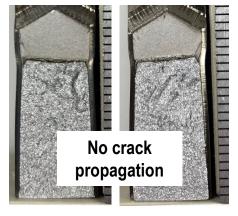
Dry 25%H₂

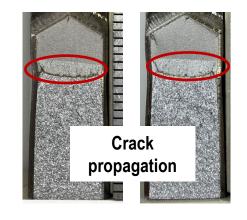
- Synergetic effect of 25%H₂ + H₂S (27 ppmv) in wet conditions
- H₂O acts as an inhibitor of HE (regarding toughness)

Fracture toughness: L360NB


Without H₂S

Without H₂

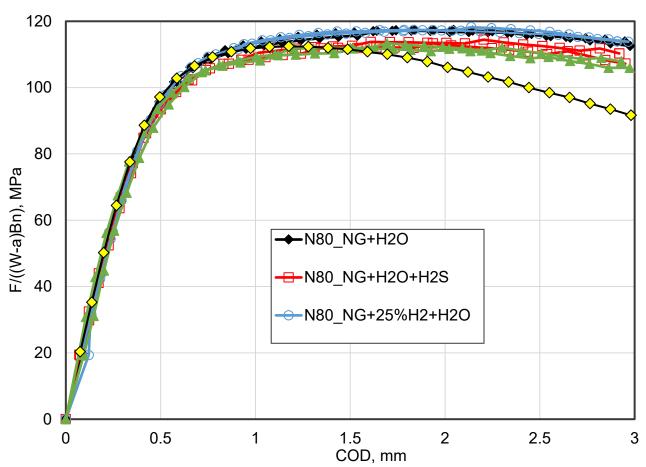

GN+H₂O



GN+25%H₂ + H₂O

With H₂S

GN+H₂O+H₂S


GN+25%H₂+H₂O+H₂S

- Crack propagates only in the presence of H₂
- Synergetic effect of 25%H₂ + H₂S (27 ppmv) I wet condition
- H₂O acts as an inhibitor of HE, regarding FT

Crack propagation:

Fracture toughness: N80Q

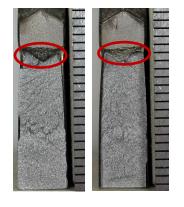
Wet NG Wet H₂
Wet NG + H₂S (27 ppmv)
Wet 25%H₂ + H₂S (27 ppmv)

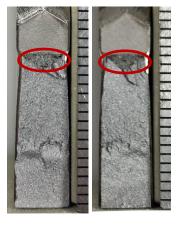
Dry 25%H₂

- No synergetic effect of 25%H₂ + H₂S (27 ppmv) in wet condition
- Moderate impact of H2 on toughness in wet conditions w/ or w/o H2S
- H₂O seems to act as an inhibitor of HE

Fracture toughness: N80Q

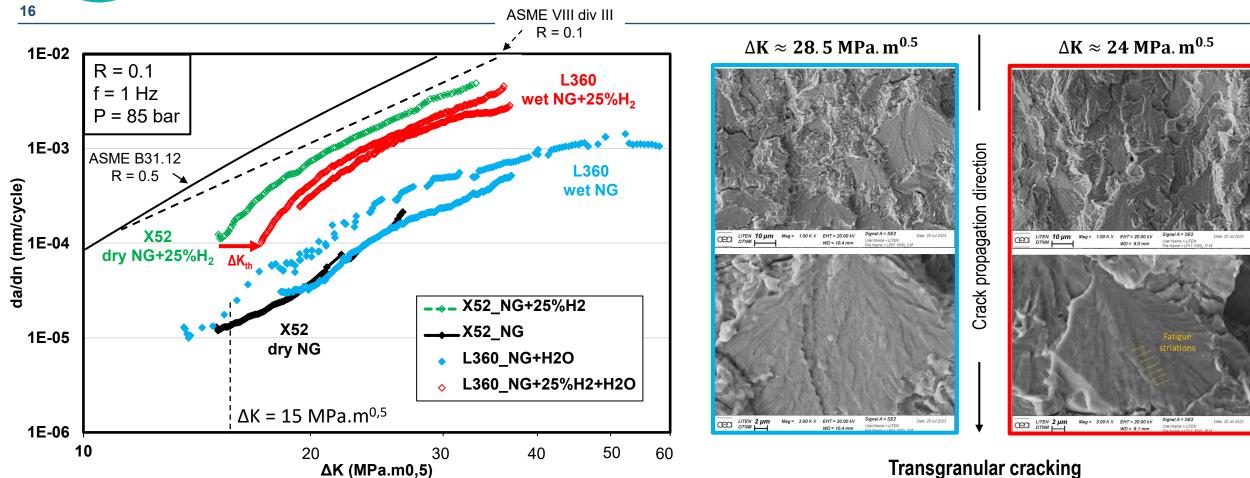
Without H₂S


Without H₂


With H₂

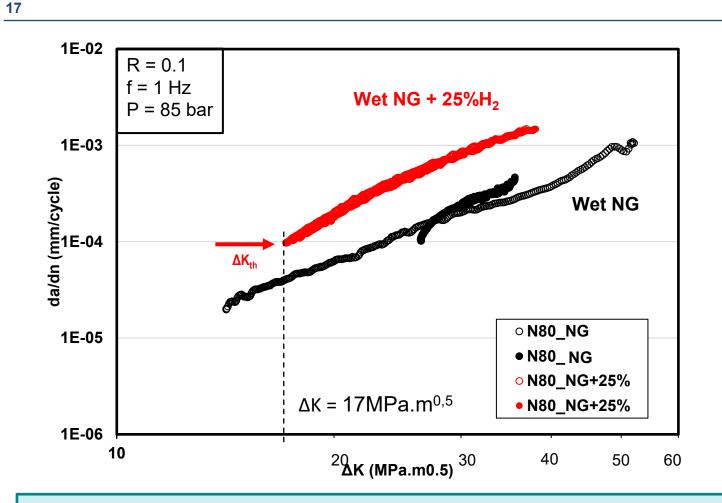
With H₂S

GN+H₂O+H₂S

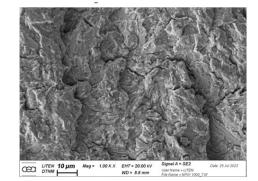

GN+25%H₂+H₂O+H₂S

- No synergetic effect of 25%H₂ + H₂S (27 ppmv) in wet conditions
- H₂O seems to act as an inhibitor of HE
- BUT : Crack propagation in all tested conditions !

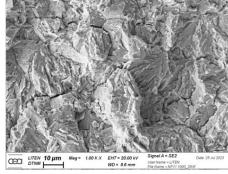
Crack propagation :

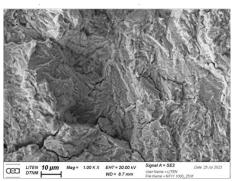


Fatigue Crack Growth (FGC): L360NB and X52


- No influence of H₂O in the Paris regime
- Influence on H₂O on ΔK_{th} shifted to higher values

Fatigue Crack Growth (FGC): N80Q





 $\Delta K \approx 21.5 \text{ MPa. m}^{0.5}$ $\Delta K \approx 18 \text{ MPa. m}^{0.5}$ Intergranular Transgranular

 $\Delta K \approx 32 \text{ MPa. m}^{0.5}$ Transgranular

- Increase of the FCGR with the addition of 25%H₂ in the NG saturated with water vapour but less than L360NB
- $\Delta K_{th} < 17 \text{ MPa.m}^{0,5}$

Results: hot melt extraction

Loading conditions similar to those for toughness and crack propagation tests

	L360NB	N80Q
	Average	Average
As-received, wppm	0.68 ± 0.03	0.52 ± 0.28
NG +25%H ₂ 3h, wppm	0.44 ± 0.13	0.74 ± 0.31
NG+25%H ₂ +H ₂ S 3h, wppm	0.45 ± 0.16	0.45 ± 0.07
NG+25%H ₂ +H ₂ S+H ₂ O 3h, wppm	0.28 ± 0.25	0.35 ± 0.10

- ➤ Mainly H trapped is measured
- > No significant difference
- \triangleright Does not explain H₂ + H₂O + H₂S synergy

Discussion

On the influence of water vapour:

	FCG	Toughness
•	ΔK_{th} shifted toward higher ΔK	a Inhibition of hydrogon offect
•	Little or no effect in the Paris regime	 Inhibition of hydrogen effect

- > Somerday et al. in oxygen environment: as oxygen content in hydrogen gas increased, the onset of acceleration stage was shifted toward higher ΔK. Above this ΔK threshold, the FCGR reached in 100%H₂ and in H₂ + O₂ (content < 1000 ppmv) were similar. Oxygen creates a passive layer at the metal surface, which delays hydrogen entry in the material. The passive layer coverage competes with the bare surfaces that are created as the crack propagates: once a critical fatigue crack growth rate is reached, the bare surfaces created as the crack advances cannot be entirely covered by the passive layer, leaving new surfaces unprotected toward hydrogen entry.
- \triangleright Possible explication in our case with the assumption that O_2 and water vapor inhibiting mechanisms are similar.

On the synergistic effect of H₂+H₂S in wet environment:

- > The observation is in agreement with the scarce literature on the topic [Kerns 1972, Fukuyama 1990, Nelson 1976].
- > H₂S dissolved in the water drop at the crack tip, creating locally a "sour" environment, promoting HE.
 - → Capillarity condensation is the acting mechanism leading to the synergistic and detrimental effect observed
- B. P. Somerday, Acta Materialia, vol. 61, no. 16, pp. 6153–6170, 2013.
- H. G. Nelson, California 94035: The Metallurgical Society of AIME, pp. 602-611, 1976.

S. Fukuyama, Pressure Vessel Technology, pp. 914–923, 1990.

G. E. Kerns, Scripta Metallurgica, vol. 6, pp. 631–634, 1972.

Context State of the art Materials and environmental tests Water vapor and H₂S effects on the hydrogen embrittlement 5 Conclusion

Conclusions

Two storage steels (N80Q and L360NB) were tested for toughness and FCGR in H2O/H2S/H2 gas:

- Fracture toughness behaviour of L360NB is degraded in the presence of wet 25%H₂+ 27 ppmv H₂S. H2O seems to reduce H2 impact on FT, and H2S to increase it. The combination H2/H2S/H2O brings synergy.
- Fracture toughness behaviour of N80Q is only affected in dry 25%H₂ compared to other wet conditions.
- FCGR of L360NB and N80Q are accelerated by factor 7 and 5 respectively in the presence of wet NG+25%H₂. This infirms the HE inhibition by water.
- Wet environment seems to be less severe than dry environment for the considered alloys. There could
 be a HE synergy with combination of H2O and H2S.

QUID with higher H₂S content?

This is not the end Folks!

We will be back...

Acknowledgements

- We would like acknowledge and thank our co-authors:
 - Christophe POMMIER, Storengy
 - Lisa BLANCHARD, CEA Liten
 - Laurent BRIOTTED, CEA Liten

Clara JUILLET / Xavier CAMPAIGNOLLE STORENGY

(+33) 141201171 / (+33)146523227

clara.juillet@storengy.com xavier.campaignolle@storengy.com