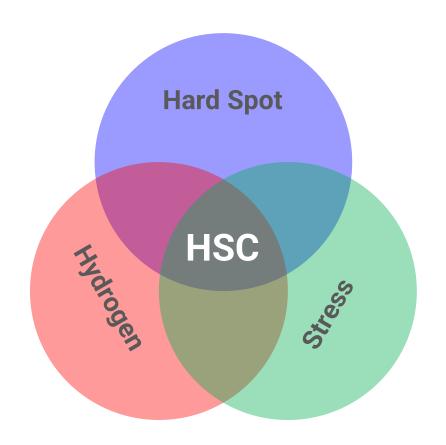


Pipeline Research Council International

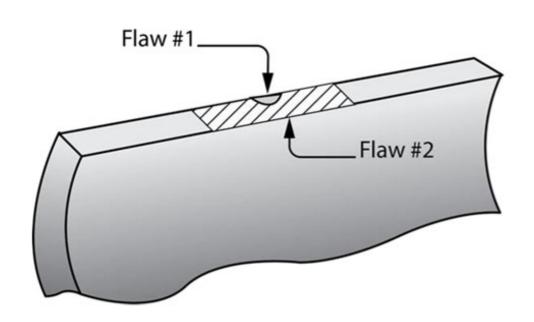
Fitness-for-Service Considerations

- Hydrogen embrittlement
 - Hardened material has higher susceptibility
 - Leads to low fracture toughness
 - Resistance to crack growth



- Hydrogen stress cracking susceptibility
 - Harder material, higher susceptibility
 - Likelihood of crack formation

- Hard spot size
 - Larger hard spot means greater length of brittle material for crack to propagate through
 - Probability of rupture before leak

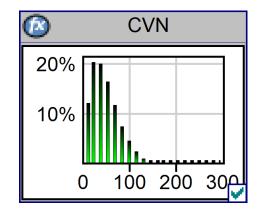


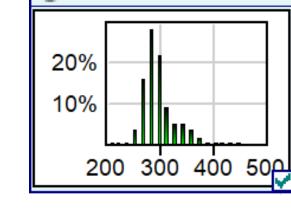
Deterministic Model

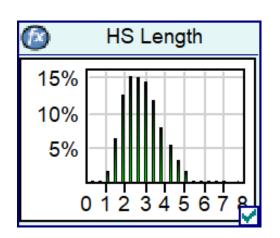
- Flaw #1: Thumbnail crack initiated due to hydrogen stress cracking
- Rapid crack growth due to low fracture toughness in hard spot
- Flaw #2: Through-wall crack length of hard spot
- What happens next?
 - Rapid crack growth continues into unhardened material (rupture)
 - Crack growth arrested at edge of hard spot (leak)

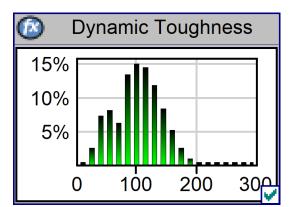
Deterministic Model

- Presence of crack is assumed
- Model prediction hinges on dynamic fracture toughness of unhardened material
- Critical parameters
 - Dynamic fracture toughness (calculated from CVN)
 - Hard spot length
 - Operating stress
- Thoughts to consider
 - Like hard spots, dynamic fracture toughness is associated with <u>plate</u> manufacturer
 - What is the length of the low-toughness area? Length of the hard spot?
 - What is the hardness threshold for HSC?


Probabilistic Model


Conceptual approach


- Randomly sample input parameters
- Determine if inputs results in rupture using deterministic model
- Repeat and count number of ruptures versus non-ruptures → probability of failure


Challenges

- Need data to create distributions for inputs
- At a minimum, need SME input
- Acceptable risk targets

HS Hardness

Probabilistic Model

- Motivation for probabilistic approach
 - We don't always have hard numbers for all the inputs
 - Even when we have the inputs, there is still uncertainty
 - Evaluating hypothetical operating scenarios
- Probabilistic model can account for aleatory and epistemic uncertainty
- Can be applied with mixed deterministic and probabilistic inputs
- Inputs can be generated from system generic data, data from like pipe, or segment specific data

How is this useful?

Susceptibility models (pre-ILI)

- Where to look for hard spots?
- Manufacturer and/or vintage specific inputs for CVN, hard spot length, hardness, etc.
- Incorporate coating susceptibility and CP effects

Hard spot integrity management (post-ILI)

- Which hard spots to verify? How to prioritize?
- Model ILI uncertainty → probability of exceedance

ILI verification

- In-ditch NDE tools and hardness mapping
- Feedback to improve ILI and recalibrate susceptibility models