

It's about pipe stress analysis

For both *pipelines* and *piping*, **pipe** stress analysis is conducted during design,

because stress is the key variable driving many failure modes (fracture, fatigue, buckling, plastic collapse, etc.)

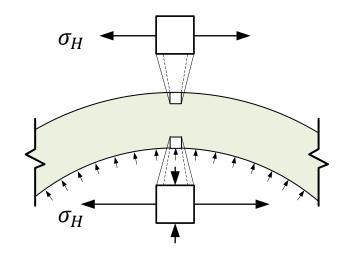
Pressure is one load considered in stress analysis...

Theory: stress due to pressure

Pressure causes pipe stress in three directions:

- Radial direction, σ_R pressure is a direct compressive load inside pipe
 - Varies inner to outer surface, (from = -P to = 0)
- Hoop direction, σ_H pipe dilates due to pressure
 - Varies from inner to outer surface (but not much)
 - Average through thickness (= $PD_i/2t$)

NOTE: Use of $PD_o/2t$ in design factor/wall thickness equation is actually an approximation of the Tresca stress on the inner surface $(=PD_i/2t + P).$



$$\sigma_H = \frac{PA_i}{A_c} \left(1 + \frac{r_o^2}{r^2} \right)$$

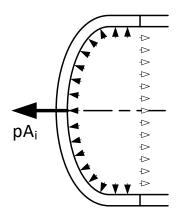
$$\sigma_R = \frac{PA_i}{A_c} \left(1 - \frac{r_o^2}{r^2} \right)$$

Theory: stress due to pressure

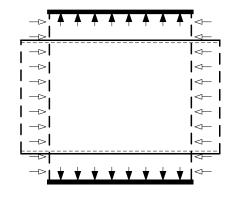
Pressure causes pipe stress in three directions:

- Two independent longitudinal effects:
 - 1. **End-cap** *force* pressure applies a direct load at fittings
 - Causes stress between the applied load and reaction load
 - Automatically balanced in any closed piping system $(F = pA_i)$
 - Stress, $\sigma_L = pA_i/A_c \approx pD/4t$
 - 2. Poisson *strain* pipe seeks to *shorten* as it *dilates* due to pressure
 - Only causes stress if it is restrained, exactly like thermal load
 - Uniform through the thickness of the pipe. At full restraint, $(\varepsilon_L = 2\nu p A_i/A_c E)$
 - Stress, $\sigma_L = 2\nu p A_i/A_c \approx \nu \sigma_H$

End-cap



Poisson strain



Pipe stress analysis is a well-established field:

- ASME B31.3 establishes the main method for flexible / "unrestrained" piping.
- Traditionally broad assumptions applied:
 - Thermal load causes only bending stress
 - Pressure causes only uniform tensile stress
 - Philosophy for allowable stress permits yielding, but prevents plastic collapse

Distilled to:

Design strength:

$$S = \min\left(\frac{2S_y}{3}, \frac{S_u}{3}\right)$$

Sustained:

$$S_L < S$$

Expansion:

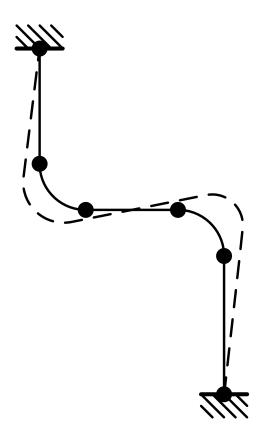
$$\Delta S_L < 3S$$

$$+C$$

where C = complications

Pipe stress analysis is a well-established field:

- Implementation in stress software
 - **Simulation** of thermal and weight response of a system of 1D pipe 'elements'
 - Longitudinal pressure stress is added in post-processing
 - Neglect any longitudinal strain/deflection due to pressure, hence no reaction loads or bending due to pressure

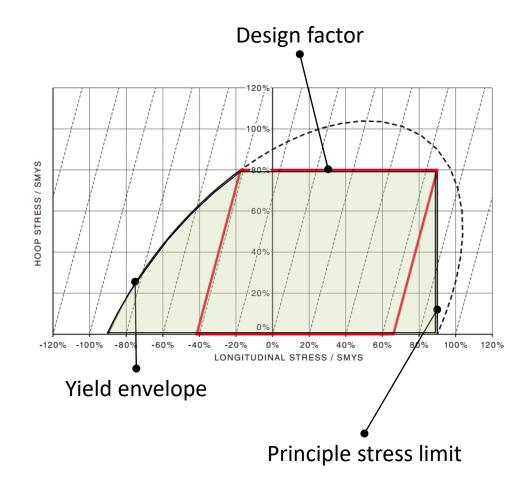


For pipelines:

- ASME B31.4 and 8: provide alternate method for "restrained" piping
 - Simpler analysis, applies Poisson stress term (= νS_H)

$$S_L = S_E + \nu S_H + \frac{M}{Z} + F_a A$$

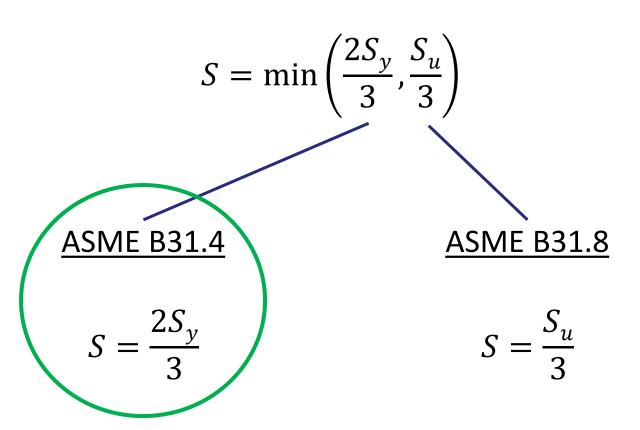
- Permits uniform load superposition, which is unexpected...
- Allowable stress
 - **Firstly:** prevention of yielding (variously 0.9Sy)
 - **Secondly:** limits principle stress (also $0.9S_v$), suitable for weld defect loading



For pipelines:

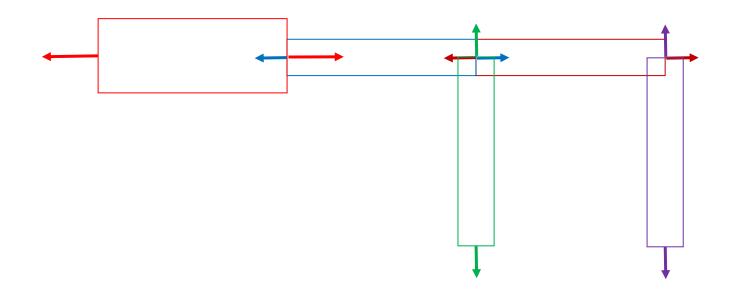
- An aside... B31.4 and B31.8 also modify the "unrestrained" allowable in two different ways...
 - 31.4 neglects ultimate strength in calculation of the allowable stress
 - 31.8 neglects yield strength in calculation of the allowable stress

ASME B31.3



It is simple for modern software to model exact pressure elongation response:

- Poisson is a uniform strain, like temperature.
- End-cap load = pA_i on every element:



Net section force method

It is simple for modern software to model exact pressure elongation response:

 The longitudinal stiffness equation is modified with both balanced end-cap and Poisson effect built-in:

Fundamental Hooke's law: $\varepsilon_L = \frac{1}{F}(\sigma_L - \nu \sigma_L - \nu \sigma_L) + \alpha_L \Delta T$

$$\sigma_L = \frac{F_a}{A_c} + \frac{pA_i}{A_c} \qquad \qquad \nu \sigma_L + \nu \sigma_L = \frac{2\nu pA_i}{A_c}$$

External applied forces

Internal applied force

Poisson effect of pressure

Revised stiffness equation: $\begin{bmatrix} F_{a1} \\ F_{a2} \end{bmatrix} = \frac{EA_c}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \underbrace{\left((2\nu - 1)A_i P - EA_c \alpha \Delta T \right) \begin{bmatrix} 1 \\ -1 \end{bmatrix}}$ New bit

Net section force method

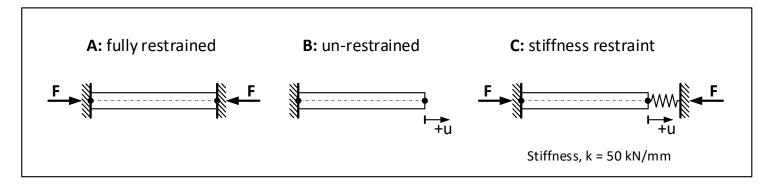
It is simple for modern software to model exact pressure elongation response:

- But, the results must be interpreted correctly.
 - Reactions/displacements: F_a and u will be accurate for reaction loads and.
 - **Stress** must be corrected for end-cap load:

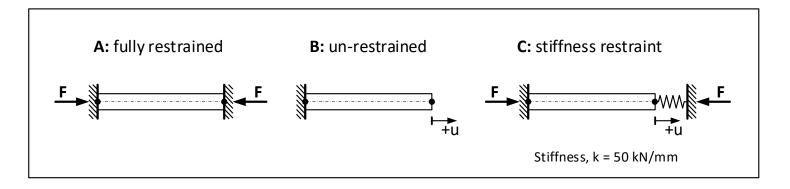
$$\sigma_L = \frac{F_a}{A_c} + \frac{pA_i}{A_c}$$

• Conceptualisation: F_a = total cross-section force including the fluid

Example #1



Operating pressure	\boldsymbol{P}	10	MPa
Temperature change	ΔT	0	K
Outer diameter	D	219.1	mm
Wall thickness	t	7.92	mm
Modulus of elasticity	\boldsymbol{E}	200	GPa
Poisson's ratio	ν	0.3	
Length	L	5	m



Variable	A: fully restrained	B: un-restrained	C: stiffness restraint
Constraint	u = 0	F = 0	F = ku
External force, F_a	-129 kN	0 kN	-24.9 kN
Pipe force, F	195 kN	324 kN	300 kN
Pipe stress, σ_L	37.1 MPa	61.8 MPa	57.0 MPa
Displacement, u	0 mm	0.619 mm	0.499 mm

Method 2 – Zero strain datum – Paper only

For hand calculations, the following alternate method can be useful:

Calculate the force in the pipe equivalent to zero strain:

$$F_0 = 2\nu p A_i + E\alpha \Delta T A_c$$

Define 'relative' force, as the difference between the actual force and the zero-strain force:

$$F' = F - F_0$$

Hence, all constant terms are removed from the stiffness equation:

$$F' = (A_c E)\varepsilon_L$$

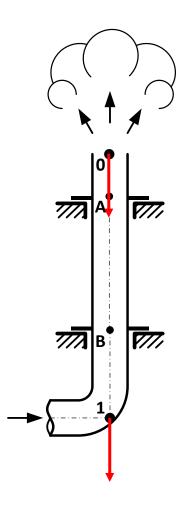
Modelling of vents

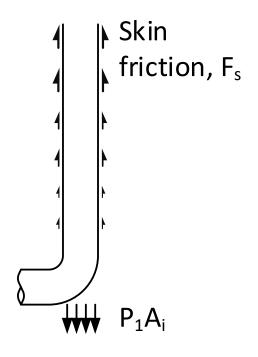
Specific issue – Vent design:

 Vents are a location where the end-cap force is not balanced at the next fitting, hence transfers through to... a restraint.

$$F_{t} = \int_{A_{c,0}} (P + \rho V^{2}) dA$$
$$= (\bar{P}_{0} + \alpha_{0} \rho_{0} \bar{V}_{0}^{2}) A_{i}$$

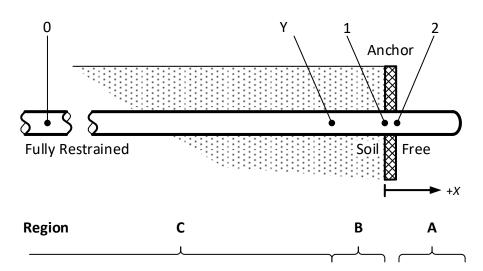
Where should the thrust force be applied?

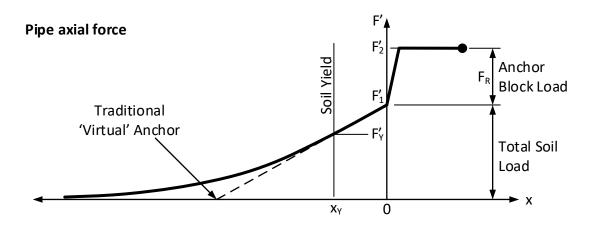




Example #2 – Paper only

Schematic





From equation (10)	$F_0 = 2\nu p A_i + E\alpha \Delta T A_c$	
	$F_0 = 315 \text{ kN}$	
Region A: $x > 0$		
Pipe force from end-cap load, eq. (3)	$F_2 = pA_i = 1,163 kN$	
From equation (11)	$F_2' = pA_i - F_0$	
	$F_2' = 848 \text{ kN}$	
Region C: $-\infty < x < x_Y$		
Soil reaction force for region C	$w = \frac{dF'}{dx} = ku$	(13)
From Equation (12)	$\varepsilon_L = \frac{du}{dx} = \frac{F'}{EA_c}$	
	$\therefore \int F'. dF' = \int EA_c ku. du$	
Solve, with $F'=0$ at $u=0$	$F'^2 = EA_cku^2$	(14)
Hence, at the yield point	$\therefore F_Y' = \pm u_Y \sqrt{EA_c k}$	
(The positive solution is correct)	$F_{Y}' = 187.4 \mathrm{kN}$	
Soil reaction force for region B	$w = \frac{dF'}{dx} = w_Y$	(15
	$\therefore F' = \int w_Y \cdot dx$	
Solve, with F_Y^\prime at x_Y	$F' = F_Y' + w_Y(x - x_Y)$	(16
Back-substitute into equation (12)	$\varepsilon_L = \frac{du}{dx} = \frac{F_Y' + w_Y(x - x_Y)}{EA_C}$	
	$\therefore u = \frac{1}{EA_c} \int (F_Y' - w_Y x_Y + w_Y x). dx$	
Solve, with u_1 at $x=0$	$u = \left(\frac{w_Y}{2EA_c}\right)x^2 + \left(\frac{F_Y' - w_Y x_Y}{EA_c}\right)x + u_1$	(17)
Solve at x_{γ}	$\left(\frac{w_y}{2EA_c}\right)x_Y^2 - \left(\frac{F_Y'}{EA_c}\right)x_Y + (u_Y - u_1) = 0$	(18
	$x_{\rm Y}=-24.9~\rm m$	
Reaction loads		
From equation (16), with $x=0$	$F_1' = F_Y' + w_Y x_Y$	
	$F_1' = 325 \text{ kN}$	
Anchor reaction force	$F_R = F_2' - F_1'$	(19

 $F_R = 524 \text{ kN}$

Why pressure elongation (can) matter

Two problems:

- Calculation of pressure elongation effects is possible with software, but **not** permitted by prescriptive codes.
 - Some software *overrides* more accurate solutions, for code compliance.
 - Incorrect interpretation may occur without guidance and a standardised method/terminology.

2. Sometimes, partial-restraint matters

- End-of-line design, where there is a transition from restrained to unrestrained conditions
- Designs using non-isotropic materials (pressure elongation can be disproportionately high for spoollable composites).
- Modelling outputs *other* than stress. We don't only use the software for stress outputs, but also reaction loads & displacements.

Restrained pipe

- Though shalt not yield!
- Nor have a high longitudinal stress.

Unrestrained pipe

- Don't fatigue yourself, dear.
- Yield if you must,
- But make sure you don't collapse.

Partially-restrained pipe?

- As per unrestrained pipe, but
- Don't yield, if yielding makes you worried

"where distortion might reduce a pipe's performance, consideration shall be given to prevention of yielding by simultaneously limiting the combined stress to 0.9 x σ_y "

Conclusion

- Permit precise methods in the standards.
- Document methodologies, so implementation is more likely to be correct.
- Liaise with software implementers, which can be... problematic. Currently.
- For practitioners know when these issues do and don't matter and how to accommodate them.

Thank you for your attention.