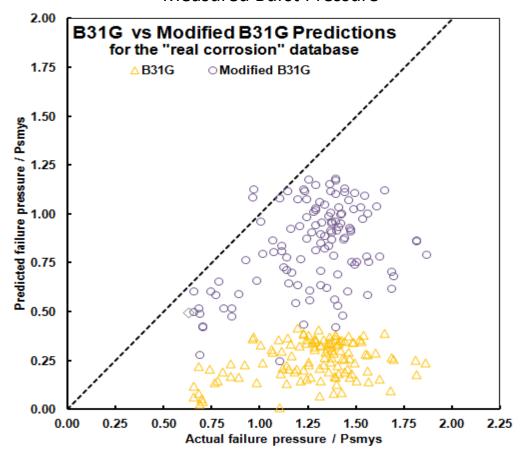


Overview

- Background and incentives
- Existing metal loss assessment models
- Reference stress function
- Burst pressure predictive model of isolated metal loss
- Conclusions and future work



Background and Incentives

- Corrosion anomalies
 - Remain a major threat to the integrity of natural gas and hazards liquid pipelines
- Existing assessment models
 - Use simplified metal loss geometry and shape
 - Do not take account of pipe material strain hardening rates
 - Do not accurately quantify interaction/coalescence
 - Can produce overly conservative burst pressure prediction

Comparison between Predicted and Measured Burst Pressure*

*Leis, B.N., Zhu, X.-K., and McGaughy, T., 2016, Phase I Report of PRCI Project EC-2-7.

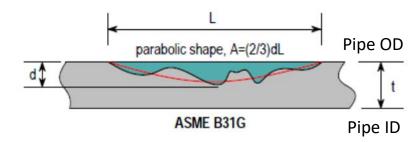
History of Metal Loss Assessment Model Development

The late 1960s Since 1990s 2018 - present

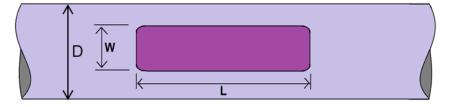
- ASME B31G
- Modified ASME B31G
- **RSTRENG**

- SHELL92
- **DNV RP F101**
- **PCORRC**
- Others

- R-PCORRC
- Psqr
- EC-2-10
- Others


EPRG-PRCI-APGA 23rd Joint Technical Meeting Edinburgh, Scotland • 6–10 June 2022

Factors Explicitly Included in Burst Pressure Prediction


Models

Metal Loss or Pipe	Contributing Factors	ASME B31G	Modified ASME B31G	DNV RP F101	R-PCORRC	Psqr	EC-2-10
	Depth and Length	√	✓	√	✓	√	✓
	Width	*	*	*	*	*	✓
Isolated Metal	Planar Shape	*	*	*	×	*	✓
Loss	Longitudinal Profile	✓ Parabolic	√ Elliptical	Flat- bottomed	Flat- bottomed	√ Elliptical	Flat- bottomed; also Parabolic; Elliptical
Multiple Interacting	Interaction	✓	✓	✓	*	✓	in process
Metal Loss	Coalescence	×	×	×	*	*	in process
Pipe	Strain Hardening	×	×	×	✓	*	✓

Longitudinal Profile

Planar Shape

Reference Stress Functions

Parameter Based	Reference Stress Function	Burst Pressure Model	Basis of Function
CNAVO	$\sigma_{R,SMYS} = 1.1 SMYS$	ASME B31G	
SMYS	$\sigma_{R,SMYS} = SMYS + 10 \ ksi$	Modified ASME B31G	Empirical fits to test data
SMTS	$\sigma_{R,SMTS} = 1.0 \ SMTS$	DNV RP F101	Empirical fits to FEA results
31113	$\sigma_{R,SMTS} = 0.9 SMTS$	SHELL92	Empirical his to 1 EA lesuits
	$\sigma_{R,M} = 2 \left(rac{1}{\sqrt{3}} ight)^{(n+1)} \sigma_{UTS}$	Ma-2013	von Mises equivalence criterion
UTS and	$\sigma_{R,T} = 2\left(\frac{1}{2}\right)^{(n+1)}\sigma_{UTS}$	Abdelghani-2018	Tresca equivalence criterion
Strain Hardening Exponent	$oldsymbol{\sigma_{R,ZL}} = 2 \left(rac{2+\sqrt{3}}{4\sqrt{3}} ight)^{(n+1)} oldsymbol{\sigma_{UTS}}$	R-PCORRC	Average shear-stress criterion or Zhu-Leis criterion
n	$\sigma_{R,EC-2-6} = (1.0745 - 0.6131n)\sigma_{UTS}$	EC-2-6	Empirical fits to FEA results
	$\sigma_{R,EC-2-10} = \left(\frac{2}{\sqrt{3}}\right) (0.933)^{(n+1)} (1.000 - 0.520n) \sigma_{UTS}$	EC-2-10	Empirical fits to FEA results

Full-Scale Burst Tests of Defect-Free Pipes

- Successfully conducted 5 full-scale burst tests of purposefully selected pipes with a wide range of strain hardening rates
- Filled the critical gap of rare test data to validate reference stress functions

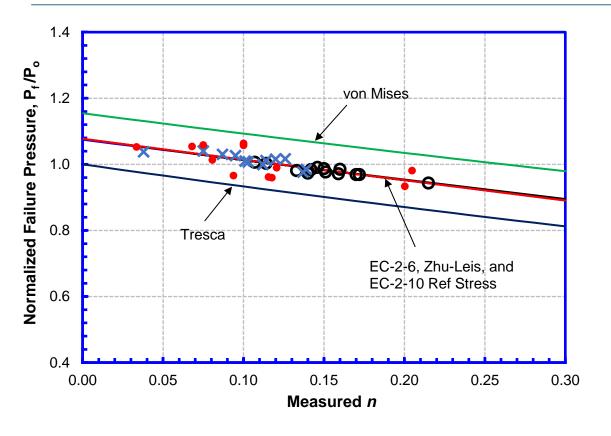
Burst	Pipe G	eometry, (Grade, and	l Seam	Pipe Manufacturing	Strain Ha	P _{exp}	
Test #	OD	WT	Crada	Seam	Manufacturing Year			
	inch	inch	Grade	Seam	i cai	Level	n	psi
1	10.75	0.365	А	Furnace Lap	1929	High	0.200	3561
2	10.75	0.303	Α				0.205	3252
3	24	0.492	X70	ERW	2017	Low	0.068	3970
4	20	0.275	0.375 X52 ERV	EDW/	2018	Medium	0.100	3146
5	20	0.375		ERW			0.100	3122

Comparison of Predicted and Measured Burst Pressure of Defect-Free Pipes

Good agreement between the predicted and measured burst pressures

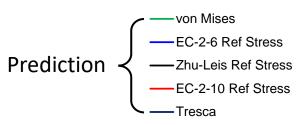
Burst		ed Pipe netry	YS at 0.5% Total	UTS	Ү/Т	Measured	P_{exp}	P _{pre}	D /D
Test #	OD	WT	Strain		171	n	_		P _{pre} /P _{exp}
	in	in	ksi	ksi			psi	psi	
1	10.803	0.376	31.26	52.89	0.59	0.200	3561	3631	1.020
2	10.800	0.325	30.35	53.43	0.57	0.205	3252	3146	0.967
3	24.092	0.497	77.48	89.41	0.87	0.068	3970	3896	0.981
4	20.078	0.382	64.36	76.18	0.84	0.100	3146	3000	0.954
5	20.093	0.382	64.36	76.18	0.84	0.100	3122	2995	0.959
								AVE	0.98
								STD	0.02

• Burst pressure was predicted via EC-2-10 reference stress function


$$P_{pre} = \frac{2}{\sqrt{3}}(0.933)^{(n+1)}(1.000 - 0.520n)\sigma_{UTS}\left(\frac{2t}{D-t}\right)$$

• Strain hardening exponent n from fitting measured stress-strain curves

Validation of Reference Stress Functions

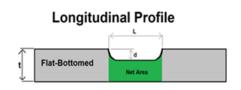

Test Data

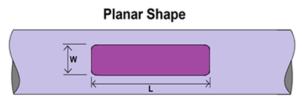
EC-2-6 tests: NG-18 X42-X60 1960s & prior

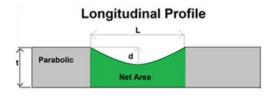
Amano tests: ~X70 (Japanese HT60) 1960s into early 1980s

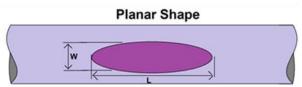
EC-2-10 tests + tests from literatures: Gr A-X120 1930s to 2018

- Burst pressure decreases with the increase of strain hardening exponent n
- The von Mise lies above and Tresca falls below the test data
- Zhu-Leis, EC-2-6 and EC-2-10 produce very similar predictions which run through the middle of the test data
- Robust and broad validation of EC-2-6 and Zhu-Leis reference stress
- Zhu-Leis reference stress is recommended.






Development of Burst Pressure Predictive Model for


Isolated Metal Loss

- Analysis approach
 - Numerically simulate burst pressure for a variety of metal-loss geometries
 - Organize and trend the data to develop a predictive model
- Analysis steps
 - Step 1: Perform 2-D and 3-D FEA on rectangular flat-bottomed metal loss
 - Step 2: Develop a model for rectangular flat-bottomed metal loss
 - Step 3: Evaluate the model against existing test data
 - Step 4: Conduct 3-D FEA on other metal loss shapes
 - Step 5: Extend the model to include different shapes

Burst Pressure Predictive Model

 A model for isolated rectangular flatbottomed metal loss:

•
$$P_N = \frac{(1-d/t)}{1-(d/t)\times F(L/\sqrt{Dt},W)}$$

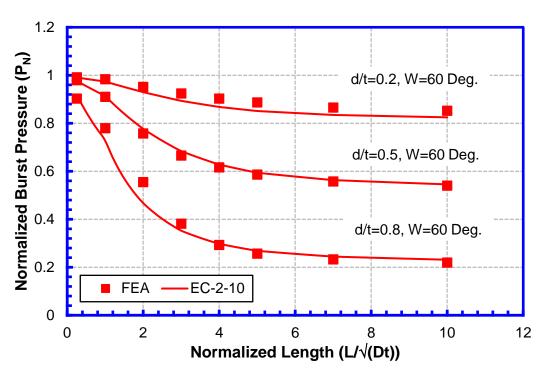
•
$$P_b = P_N \times \sigma_{R,ZL} \times (2t/D)$$

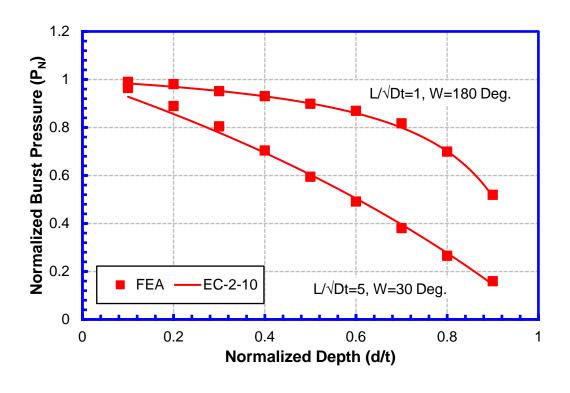
- Applicable range
 - Normalized depth: $0.1 \le d/t \le 0.9$
 - Normalized length: $0.25 \le L/\sqrt{Dt} \le 10$
 - Width angle: $2.5 \le W \le 180.0$ degrees

Parameters Category Symbol		Description of Barameters			
		Description of Parameters			
Burst Pressure	P_N	Normalized burst pressure of the corroded pipe			
Duist Flessule	P_b	Burst pressure of the corroded pipe			
Reference Stress	$\sigma_{R,ZL}$	Zhu-Leis reference stress			
Dina Coomatry	D	Pipe outer diameter			
Pipe Geometry	t	Pipe wall thickness			
	L	Metal loss longitudinal length			
Metal Loss Geometry	d	Metal loss max depth			
	W	Metal loss circumferential width			

Function *F*

F	W (Deg.)									
L/\sqrt{Dt}	2.5	10.0	30.0	40.0	60.0	90.0	135.0	180.0		
0.25	0.996	0.995	0.989	0.986	0.978	0.966	0.950	0.930		
0.50	0.971	0.970	0.965	0.963	0.957	0.948	0.937	0.924		
0.75	0.945	0.945	0.942	0.939	0.937	0.931	0.924	0.920		
1.00	0.916	0.915	0.912	0.910	0.908	0.904	0.899	0.895		
1.25	0.879	0.876	0.872	0.868	0.866	0.861	0.854	0.845		
1.50	0.837	0.831	0.825	0.820	0.816	0.808	0.799	0.786		
1.75	0.793	0.784	0.776	0.774	0.764	0.752	0.740	0.725		
2.00	0.750	0.740	0.730	0.725	0.715	0.700	0.685	0.670		

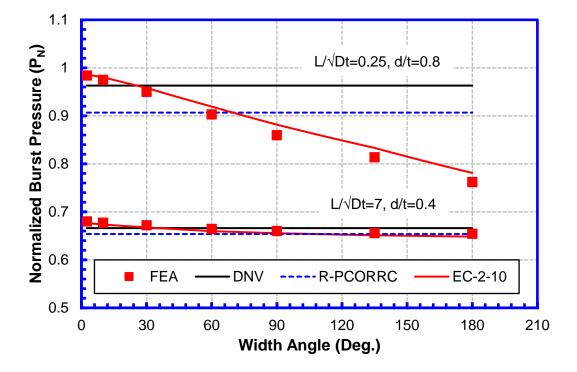




Evaluation of the Model – Compared to FEA and other

Model Predictions

- A good agreement obtained between EC-2-10 model prediction and FEA
- EC-2-10 model captures the trend of burst pressure vs. metal loss length and depth



Evaluation of the Model – Compared to FEA and other

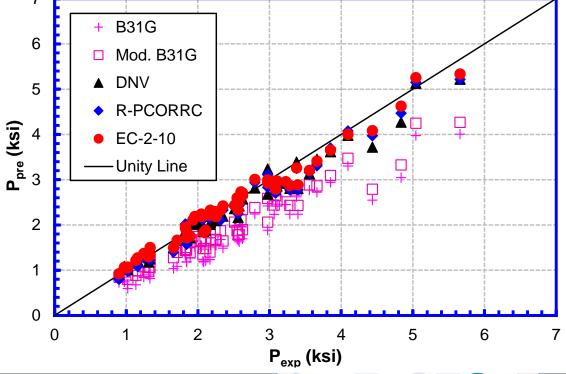
Model Predictions – Cont.

Normalized burst pressure vs. width angle of rectangular flat-bottomed metal loss

For short and deep metal loss:

- EC-2-10 model captures width effects
- DNV and R-PCORRC don't capture width effects
- When width angle > ~70°, EC-2-10 model predicts lower burst pressure than DNV and R-PCORRC
- For long and shallow metal loss:
 - Width effects are marginal
 - The predicted burst pressures from these three models and FEA are similar

EPRG-PRCI-APGA 23rd Joint Technical Meeting Edinburgh, Scotland • 6-10 June 2022


Evaluation of the Model – Comparison to Existing

Full-Scale Test Data

More accurate and precise burst pressure prediction than ASME B31G and Modified ASME B31G

- Similar burst pressure prediction compared to DNV and R-PCORRC
 - The metal loss size and shape of the tested pipes were limited and not able to quantify width effects.

Predictive	P _{pre} /P _{exp}							
Model	ASME B31G	Mod. B31G	DNV	R- PCORRC	EC-2-10			
Mean	0.69	0.78	0.97	0.97	0.99			
Std	0.09	0.09	0.07	0.08	0.07			
CoV	0.12	0.11	0.07	0.08	0.08			

EPRG-PRCI-APGA 23rd Joint Technical Meeting Edinburgh, Scotland • 6–10 June 2022

Extension of the Model to other Shapes

• A shape effect factor λ is introduced, such that

$$P_b^{EP} = \lambda (d/t, L/\sqrt{Dt}, W) \times P_b^{Rec}$$

 P_b^{EP} : predicted burst pressure of metal loss with elliptical planar shape and parabolic longitudinal profile P_b^{Rec} : predicted burst pressure of rectangular flat-bottomed metal loss

• Given metal loss d/t, L/\sqrt{Dt} , and W, λ can be obtained from a look-up table directly or by interpolation.

d/t	L/\sqrt{Dt}		₩ (Deg.)						
u/t	L/VDt	2.5	10.0	30.0	60.0	90.0			
	0.25	1.000	1.000	1.000	1.000	1.000			
	1.00	1.001	1.014	1.041	1.057	1.062			
	2.00	1.017	1.037	1.082	1.139	1.166			
0.4	3.00	1.035	1.055	1.108	1.172	1.224			
0.4	4.00	1.033	1.052	1.107	1.170	1.223			
	5.00	1.038	1.056	1.096	1.150	1.188			
	7.00	1.047	1.057	1.083	1.119	1.150			
	10.00	1.052	1.055	1.066	1.084	1.112			

Conclusions and Future Work

Conclusions

- A new burst pressure predictive model, EC-2-10 model, was developed.
- EC-2-10 model can capture coupled effects of metal loss width along with its planar shape, longitudinal profile, length, and depth.
- The effects of width on burst pressure depend on the metal loss depth, length, planar shape, and longitudinal profile.
- Improved burst pressure prediction vs. ASME B31G and Modified ASME B31G. And similar burst pressure prediction vs. DNV and R-PCORRC.

Future work

- More full-scale tests are planned to demonstrate width effects.
- EC-2-10 model will be extended to assess complex real corrosion by quantifying interaction and coalescence.

Thank you for your attention.