

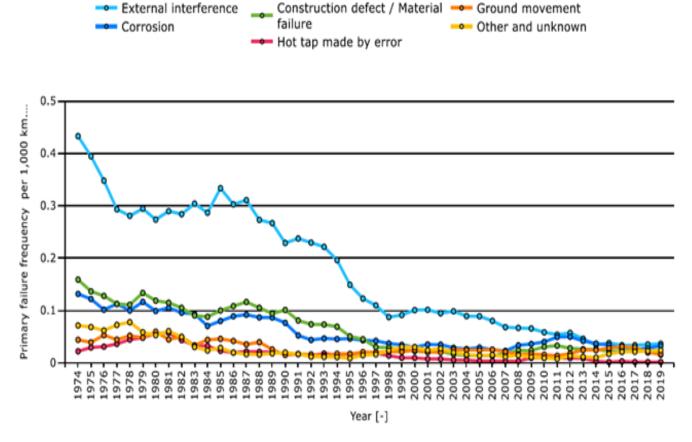
8 June 2022

G.Malatesta*, P. Roovers

Content

- Background
- Projects
- Mechanical damage
- Full scale tests (damaged pipes + environment + cathodic protection)
- Post test analysis
- Conclusions

Background


28 July 2022

"Incidents caused by external interference [...] are characterized by potentially severe consequences [...] Over the last ten years, external interference [...] represent 27% [...] of the pipeline incidents reported" [1].

The hydrogen generated by cathodic (over) protection may play an important role, entering inside the material lattice when stresses are applied (internal pressure), causing the local embrittlement of the pipe material and allowing the growth of micro-cracks in the damaged area, which often undergoes a re-transformed microstructure, with higher hardness and lower toughness properties, as a consequence of the damaging process.

1. 11th EGIG report: Gas Pipeline Incidents, Doc. Number EGIG VA 20.0432, December 2020

Projects

Three full scale projects aimed at reproducing the effect of cathodic (over) protection on pipes with third party damage. Variables investigated were:

- Damage type: gouge or dent&gouge;
- Tooth wear: new or worn;
- Cathodic protection potential: -850, -1150, -1450 mV vs Cu/CuSO₄;
- Environment: ground water and brackish water;
- Coating: with or without coating.

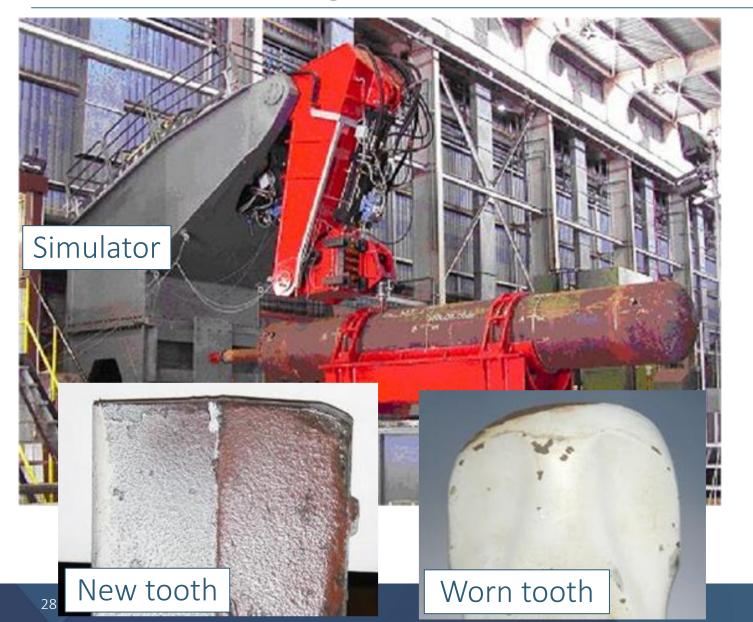
Projects

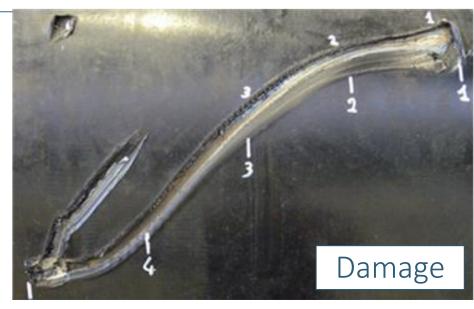
The full scale tests included:

- Realistic damages;
- Cyclic internal pressure;
- Environment;
- Cathodic protection.

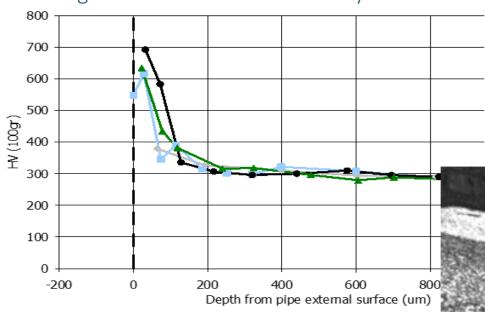
Total of 28 damages and 20 months testing.

Projects


Project #	151	174	196	
Pipes	2 LSAW, X70, 48"OD x 17,5mm WT	2 LSAW, X70, 48"OD x 17,5mm WT	1 HSAW, X70, 48"OD x 17,5mm WT	
Total number of damages	16	8	4	
Type of damages	Dent&gouge + gouge	Dent&gouge	Dent&gouge	
Coating	3LPE	3LPE	No coating	
Simulated excavator (ton)	35	35	35	
Excavator tooth	New and worn	New	New	
Cathodic protection potential vs Cu/CuSO ₄ (mV)	-850 and -1450	-1150 and -1450	-1450	
Environment	Ground water and brackish water	Ground water	Ground water	
Max pressure (bar)	100	100	100	
Min pressure (bar)	90	90	90	
R (P _{min} / P _{max})	0,9	0,9	0,9	
UF (hoop stress / SMYS) (%)	72	72	72	
Strain rate	~ 6,0 x 10 ⁻⁸	~ 6,0 x 10 ⁻⁸	~ 6,0 x 10 ⁻⁸	
Testing time (months)	~4	~8	~8	
Total number of cycles	~3600	~9000	~7000	



Mechanical damage



Mechanical damage

Damage features after making and before full scale test

Higher hardness material locally

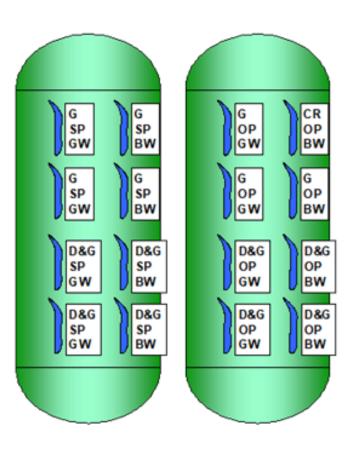
Transformed microstructure in the damaged area

Mechanical damage

Damages dimensions

			BG1	BG2	BG3	BG4	G1	G2	G3	CR1
	Damage	type		Dent&	gouge		Gouge			CR
e 1	Dent (mm)	Depth	6,7	6,0	6,0	6,8	< 1,0	< 1,0	< 1,0	
Pipe	.	Depth 1	5,6	5,6	5,6	5,4	5,6	5,6	5,4	
	Gouge* (mm)	Depth 2	5,6	5,8	5,7	5,6	5,7	5,9	5,5	
	(111111)	Length	450	460	440	450	440	440	440	
			BG1	BG2	BG3	BG4	G1	G2	G3	G4
	Damage	type	Dent&gouge			Gouge				
e 2	Dent (mm)	Depth	5,5	5,1	8,0	5,4	< 1,0	< 1,0	< 1,0	< 1,0
Pipe		Depth 1	5,1	5,0	4,5	4,8	4,7	5,0	5,2	5,2
	Gouge* (mm)	Depth 2	4,3	4,5	4,5	5,2	4,1	5,1	4,6	5,4
	()	Length	470	440	462	450	455	470	455	450

^{*:} Gouge depth including coating thickness, about 4 mm and not constant.


			_				
			BG1	BG2	BG3	BG4	
	Damage	type	Dent&gouge				
e 3	Dent (mm)	Depth	1,9	1,5	1,8	2,0	
Pipe		Depth 1	0,5	0,5	0,6	0,9	
	Gouge (mm)	Depth 2	0,6	0,8	0,7	0,6	
	(111111)	Length	460	470	450	470	
			BG1	BG2	BG3	BG4	
	Damage	Dent&gouge					
e 4	Dent (mm)	Depth	2,5	1,9	2,7	3,0	
Pipe 4		Depth 1	0,4	0,3	0,5	1,0	
	Gouge (mm)	Depth 2	0,4	0,4	0,4	0,6	
	(111111)	Length	450	450	460	450	
	Damage	type		Dent&	gouge		
e 5	Dent (mm)	Depth	3,4	4,1	3,7	3,6	
Pipe		Depth 1	0,5	0,4	1,0	0,9	
	Gouge (mm)	Depth 2	1,6	1,6	1,5	1,3	
	(mm)	Length	455	470	470	460	
		EPRG	LKC	1.) (((APGA	9	

Full Scale Tests

Each pipe has a number of damages, one cell per damage with its own environment, cathodic protection potential, electrode and sensors.

Full Scale Tests

			BG1	BG2	BG3	BG4	G1	G2	G3	CR1
	Damage	type		Dent&	gouge			Gouge		C.R.
Н	Potential	Target				-14	150			
Pipe	vs Cu/CuSO ₄ (mV)	Actual mean	-1378	-1370	-1446	-1401	-1338	-1432	-1383	-1131
_	Current density	Target				2,0 -	- 4,0			
	(mA/cm²)	Actual mean	3,5	3,6	3,6	3,5	3,6	3,6	3,5	0,8
	Environment		G. W.	G. W.	G. W.	G. W.	B. W.	B. W.	B. W.	B. W.
			BG1	BG2	BG3	BG4	G1	G2	G3	G4
	Damage	type		Dent&gouge Gouge						
2	Potential	Target				-8	50			
Pipe	vs Cu/CuSO ₄ (mV)	Actual mean	-823	-838	-850	-846	-842	-829	-838	-842
۵	Current density	Target				10) ⁻²			
	(mA/cm²)	Actual mean	0,013	0,017	0,014	0,013	0,014	0,015	0,014	0,003
	Environn	nent	G. W.	G. W.	G. W.	G. W.	B. W.	B. W.	B. W.	R W

 Temperature (°C)
 23,8 – 32,9

 Pressure (bar)
 90 – 100

 Cycles
 3591

Full Scale Tests

			BG1	BG2	BG3	BG4		
	Damage	type	Dent&gouge					
က	Potential (mV)	Target		-11	.00			
Pipe	Vs Cu/CuSO ₄	Actual mean	-1129	-1130	-1149	-1120		
_	Current density	Target		10) ⁻¹			
	(mA/cm ²)	Actual mean	0,4	0,4	0,3	0,4		
	Environ	ment	Ground water					
		BG1	BG2	BG3	BG4			
	Damage	type	Dent&gouge					
4	Potential (mV)	Target		-14	50			
Pipe	Vs Cu/CuSO ₄	Actual mean	-1476	-1500	-1426	-1469		
_	Current density	Target		2,0 -	- 4,0			
	(mA/cm ²)	Actual mean	4,6	4,7	4,8	4,6		
	Environ	ment		Ground water				

			BG1	BG2	BG3	BG4			
	Damage	type	Dent&gouge						
က	Potential (mV)	Target		-11	.00				
ipe	Vs Cu/CuSO ₄	Actual mean	-1129	-1130	-1149	-1120			
<u>P</u>	Current density	Target		10) ⁻¹				
	(mA/cm ²)	Actual mean	0,4	0,4	0,3	0,4			
	Environi	Environment			Ground water				
		BG1	BG2	BG3	BG4				
	Damage	type	Dent&gouge						
4	Potential (mV)	Target		-14	50				
Pipe	Vs Cu/CuSO ₄	Actual mean	-1476	-1500	-1426	-1469			
_	Current density	Target		2,0 -	- 4,0				
	(mA/cm ²)	Actual mean	4,6	4,7	4,8	4,6			
	Environi	ment	Ground water						

Temperature (°C)	0,2 – 45,8
Pressure (bar)	90 – 100
Cycles	9015

			BG1	BG2	BG3	BG4	
	Damage type		Dent&gouge				
2		Target	-1450				
Pipe		Actual mean	-1410	-1380	-1410	-1370	
4	Current density	Target	2,0 – 4,0				
	(mA/cm ²)	Actual mean	2,6	2,5	2,6	2,63	
	Environ	ment	Ground water				

Temperature (°C)	6,5 – 40,7
Pressure (bar)	90 – 100
Cycles	7000

EPRG-PRCI-APGA 23rd Joint Technical Meeting Edinburgh, Scotland • 6–10 June 2022

Post test analysis

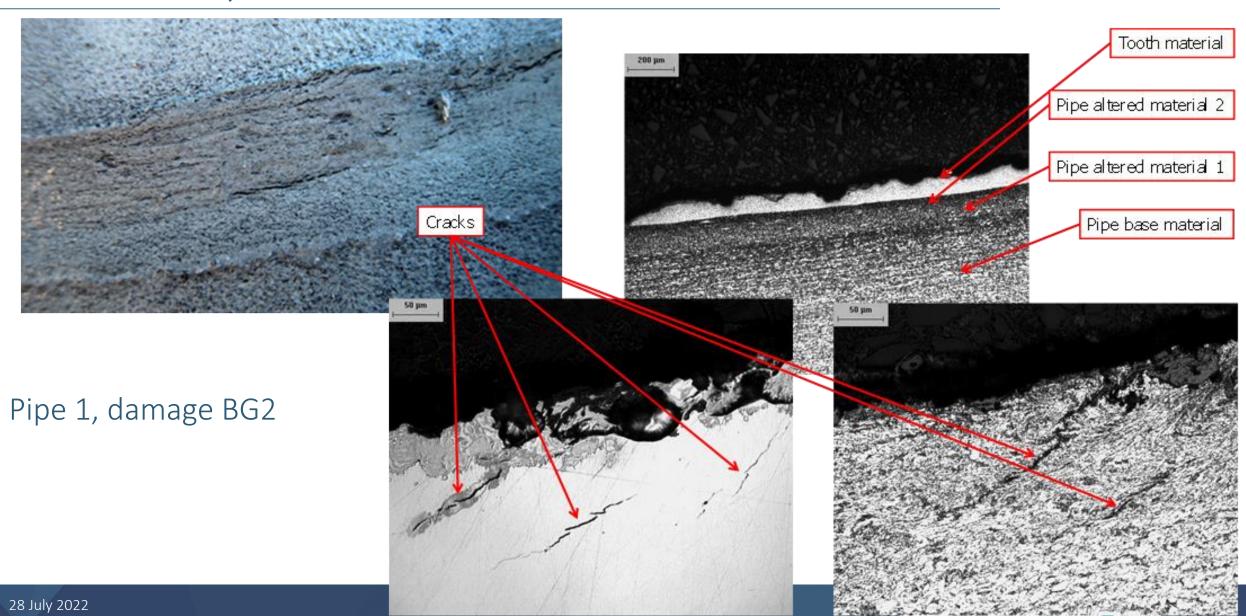
NDT were performed after full scale test. Comparison with findings from microstructural analysis.

	Pipe 1		Pipe 2				
Damage	amage NDT Microst		Damage	NDT	Microstructure		
BG1	No crack		BG1	Cracks at end of gouge	Cracks		
BG2	No crack		BG2	Cracks in the gouge	Cracks		
BG3	No crack		BG3	Cracks at impact point	Cracks		
BG4	Cracks at end of gouge	No crack	BG4	Cracks at end of gouge	Cracks		
G1	No crack		G1	Cracks at end of gouge	Cracks		
G2	No crack		G2	No crack			
G3	Cracks at end of gouge	Cracks	G3	Cracks at end of gouge	Cracks		
CR1	No crack		G4	No crack			

	Pipe 3	Pipe 4			
Damage	NDT	Microstructure	Damage	NDT	Microstructure
BG1	Crack in the gouge and at the end of gouge	No crack	BG1	Crack at end of gouge	No crack
BG2	Crack in the gouge	No crack	BG2	Crack at end of gouge	Cracks
BG3	Crack in the gouge and at the end of gouge	No crack	BG3	No crack	No cracks
BG4	Crack in the gouge	No crack	BG4	No crack	No cracks

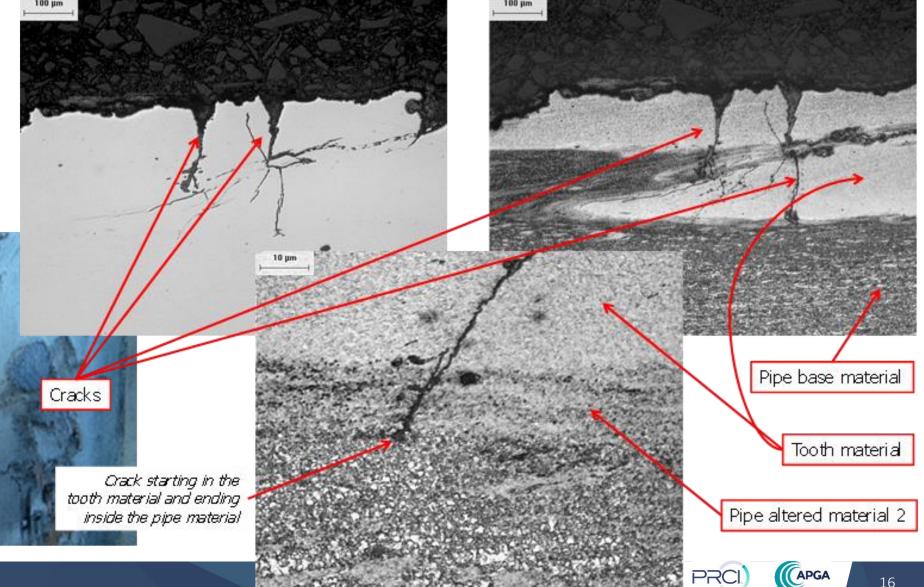
EPRG-PRCI-APGA 23rd Joint Technical Meeting Edinburgh, Scotland • 6–10 June 2022

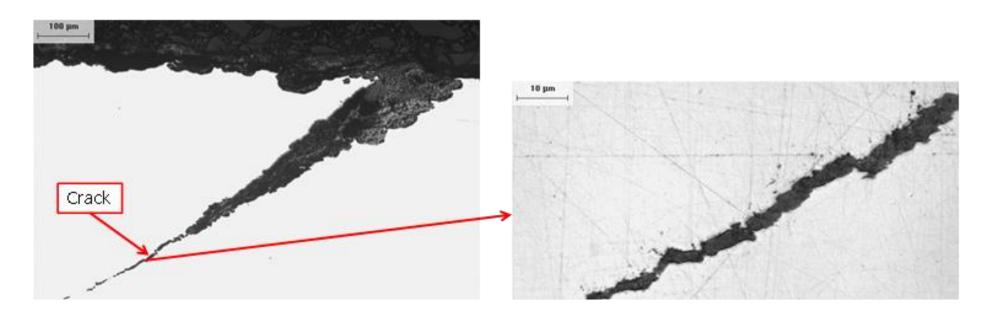
Post test analysis


On Pipe 5, NDT were performed before and after full scale test. Comparison with findings from microstructural analysis. All indications were confirmed by the microstructural analysis.

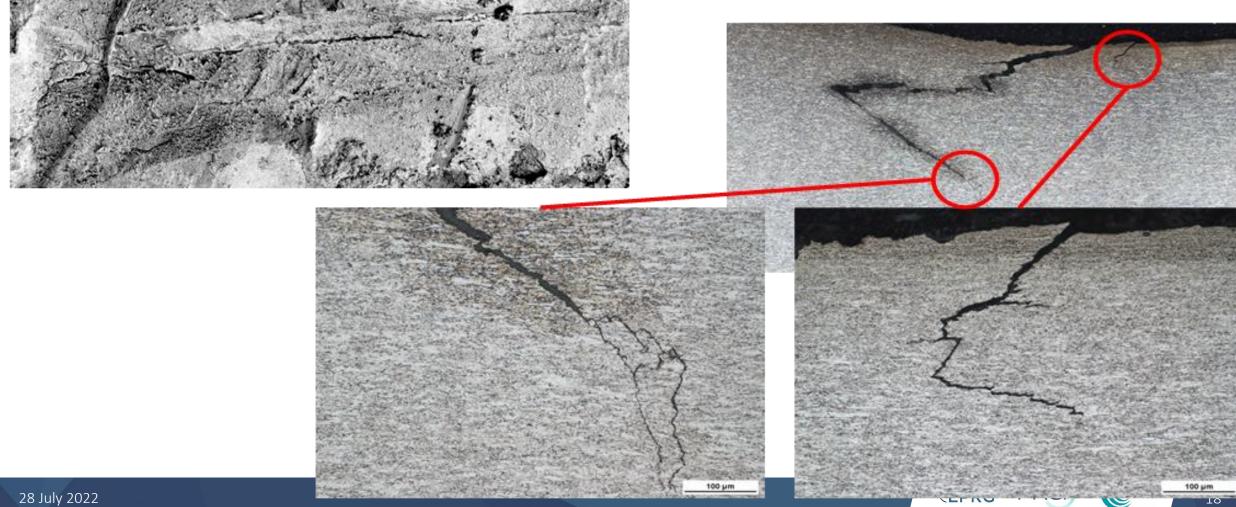
Cracks found before full scale test grew, and new cracks were observed in damage BG4.

	Before full scale test				After full scale test			
Damage	Indications	Туре	Dimensions (mm)	Position	Indications	Туре	Dimensions (mm)	Position
BG1	1	Group of cracks	70	End of gouge	1	Group of cracks	80	End of gouge
BG2	1	Group of cracks	50	End of gouge	1	Group of cracks	80	End of gouge
BG3	1	Group of cracks	10	End of gouge	1	Group of cracks	70	End of gouge
BG4	0				2	Group of cracks	10 – 80	Print and end of gouge

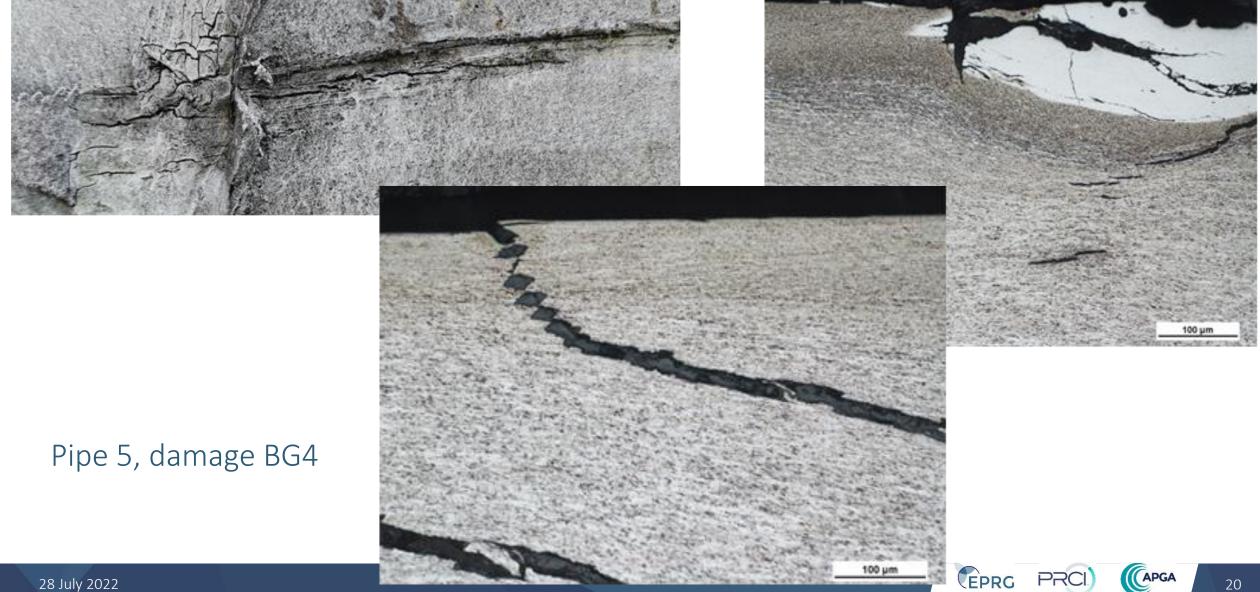



Pipe 1, damage G1

Pipe 1, damage BG3



Pipe 5, damage BG1

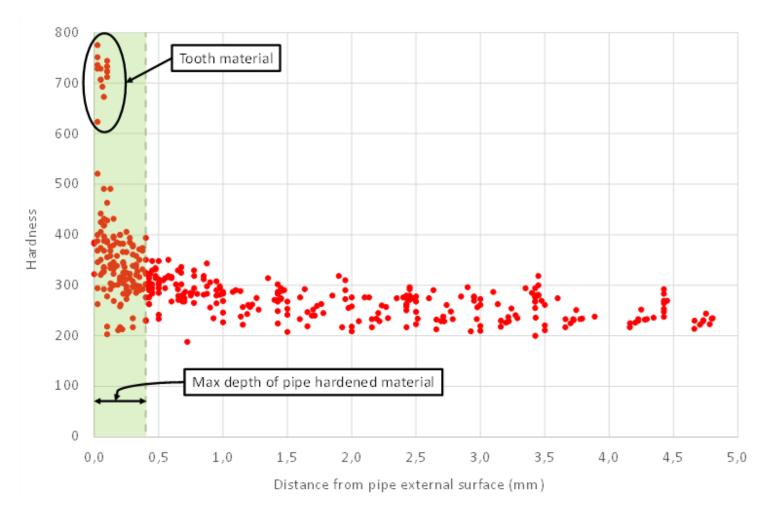


Statistics on damages

Potential vs Cu/CuSO ₄	mV	-850	-1150	-1450
Damages	Total number	8	4	15
NDT	Damages with cracks	2	4	12
	%	25	100	80
Microstructure	Damages with cracks	1	1	12
	%	12,5	25	80
	Brittle or branched cracks	0	0	9
	%	0	0	60
	Cracks deeper than hardened layer	0	0	6
	%	0	0	40

40% of damages showed cracks attributable to cathodic over protection (-1450 mV), while at -850 mV and -1150 mV there was no evidence of such effect.

Comparing the cracks depth from external surface, it is found that the depth of the cracks ranges from about 50 μ m to about 2,25 mm. Then, the highest estimated crack growth rate is approximately 0,31 μ m/cycle.



Hardness measurements

It is found that hardness of tooth material is quite higher, above 600 HV, than the pipe material. At the same time, the pipe hardened material extends to about 0,4 mm depth from external surface showing values up to 500 HV, higher than 300 HV average beyond 0,5 mm depth and 250 HV beyond 1,0 mm depth.

As a consequence, the deep crack from pipe surface with high hardness to about 2,25 mm depth, extended down to material where hardness is lower and there is no evidence of microstructural alteration.

Main outcome

At the end of the three projects, main outcomes are:

- Cracks may be present since damage creation or initiate and develop at a later time. Depending on the tooth geometry, excavator size and coating, cracks may have different geometry and size;
- In the cracks area, the pipe material exhibits microstructural alteration and hardening, due to the damaging process. The pipe altered material is harder than the base material (500 HV vs 200 − 300 HV in the base material) and the tooth material is harder (≥ 600 HV);
- Coating (3 LPE) may act as a sort of lubricant between excavator tooth and pipe surface, so to reduce aggressivity of damages. In some cases, a thin layer of melted coating may still act as a protection of the damaged area and prevent crack formation. Nevertheless, in most cases of the present study, the coating was removed by the impacting tooth;
- Some cracks are branched, other have sharp edges, but in both cases with no plastic deformation. Such characteristics are attributable to the effect of hydrogen from cathodic over protection, especially if cracks grow deeper than the pipe hardened material;
- Genrally, cathodic over protection potentials (-1450 mV vs Cu/CuSO4) cause higher number of cracks with respect to standard cathodic protection potentials (-850 mV and -1150 mV vs Cu/CuSO4), where no evidence of cathodic protection detrimental effect was found;
- Cracks may grow with high R values $(P_{min} / P_{max} = 0.9)$ of pressure cycling, representative of gas pipelines;
- The deepest cracks detected range from 1,75 mm to about 2,25 mm (from pipe external surface), that is 10 12,5% of the pipe wall thickness, to be added to the thickness reduction due to the gouge. In such a case, the total depth is up to 3,85 mm, that is about 22% of the pipe wall thickness;
- Basing on the size of the deepest crack, the highest estimated crack growth rate is approximately 0,31 μm/cycle.

Conclusions

In conclusion:

- Cracks on third party damaged pipes under cathodic protection may be found even when considering modern pipe, not high grade, compliant to ISO 3183;
- Cracks start from the hard material on the pipe surface (tooth material or hardened pipe material), can initiate at the moment of damage creation or at a later time;
- Hence, in case of evidence of third party damage, the hardened material should be removed to prevent crack growth or initiation;
- Cracks grow or initiate especially at cathodic over protection potentials (-1450 mV vs Cu/CuSO₄), while at lower potentials (up to -1150 vs Cu/CuSO₄) there is no evidence of growth or initiation.
- When cathodic over protection is present, the crack growth rate may reach 0,31 μm/cycle at the testing conditions applied (UF = 72% SMYS and R = 0,9, representative of gas pipelines service conditions), and the cracks may extend to 10 12% of the pipe wall thickness inside the pipe base material. As a consequence, the total damage depth, crack and gouge, may be more than 20% of the pipe wall thickness and potentially affect the pipe resistance to internal pressure.

Thank you for your attention.