PERFORMANCE OF ILI TECHNOLOGIES FOR DENTS WITH INTERACTING FEATURES

08 June 2022
This is an overview of the PRCI NDE-4-18 project, part of the PRCI MD SRP

- To support industry drive for integrity management improvement
- PRCI sponsored these trials to consider ILI performance for mechanical damage (dents) with coincident features (corrosion, gouge, crack)
- Consider a range of ILI technologies and systems

The objectives were to

- Prepare and characterize pipe samples with dents and coincident features
- Demonstrate performance of ILI technologies wrt feature detection, identification and sizing
- Provide feedback and reference data to Service Providers for system and specification development
• Trial Samples and Features
 • Focus on 20 inch diameter (ERW / DSAW) pipe
 • 0.25 to 0.5 in wall thickness
 • Features in current trials identified as
 • Dent
 • Corrosion in plain pipe
 • Dent with corrosion
 • Dent with gouge
 • Dent with cracks
 • Dent with corrosion and cracks
 • Approx. 500 ft of pipe with 65 dent features w/wo coincident features
Sample Production and Characterization

- **Sample Feature Production**
 - Dent features
 - Formed in lab with a range of indenters
 - Single and multi-peak dent shapes
 - Corrosion features
 - Pipe removed from service
 - Corrosion wall thickness reduction 10% to 40%
 - Cracks
 - Formed in dents by cycling pipe internal pressure
 - Gouges (EPRG provided)
 - Simulated during indentation with backhoe tooth
 - Machined on dent surface
Sample Production and Characterization

- Sample Characterization
 - Dent and corrosion features
 - Full circumference surface laser scan
 - Defines 3 dimensional shape of dent and corrosion features
 - Scan data confirmed with caliper & pit gauge
Sample Production and Characterization

- Sample Characterization
 - Crack features
 - Characterized digitally after magnetic particle inspection (MPI)
 - Defines surface length and position of features
 - Metallurgical sectioning and Computed Tomography (CT)
 used to augment crack depth and shape for a subset of features
Sample Production and Characterization

- Range of Corrosion Features
 - Considered features of various depth, length and width
 - All features identified based on API 1163 classes
 - Pin-hole
 - Pit
 - Axial / Circ. Groove
 - Axial / Circ. Slotting
 - Extended
Sample Production and Characterization

- Range of Dent Feature Shapes
 - Single and multi-peak dents with depths ranging from 1 to 5% of pipe dia.
 - Dents created with various indenters with pipe unpressurized and pressurized
Trial Protocol

- Document developed describing the trial process
 - Two repetitions of five test speeds (1.1, 3.3, 5.6, 7.8 & 11.1 mph)

- Define feature specific data reporting
 - Seven specific features types defined
 - Crack in corrosion
 - Crack in corrosion in dent
 - Crack in dent
 - Corrosion in dent
 - Corrosion
 - Gouge in dent
 - Dent
 - Characteristics of each feature and position defined relative to reference mark
 - Dent coincidence zones defined
 - POD and POI defined statistically as in API 1163

- Trials completed for seven ILI Service Providers
Trial Protocol

- Corrosion feature matching
 - No clustering or boxing of features considered because rules not standard
 - Resulted in higher POD for larger features
 - Resulted in low POI for larger or longer features
• Dent depth unity plot performance for all tests of one ILI system
 • Good overall performance
 • Most data within 4 mm of reference
 • Unity line 2 and 4 mm arbitrarily selected (not standard)
 • Small bias to call out deeper dents
 • Small amount more variability in U/S measurement
Trial Observations and Performance – Dent Depth

- Dent depth unity plot performance for all tests of six mechanical caliper ILI systems
 - Approx. 6,300 observations
 - Good overall performance
 - Most data within 4 mm of reference
 - Unity line 2 and 4 mm arbitrarily selected (not standard)
 - Small bias to call out deeper dents
 - Small amount more variability in U/S measurement
- Ultrasonic caliper system displayed similar performance
Dent characteristic length unity plot performance for all tests of one ILI system:
- Good overall performance
- More variation at dent shoulder (10% max depth)
- Small bias to call out smaller lengths
- Small amount more variability in D/S measurement
- CW and CCW results the same
Trial Observations and Performance – Corrosion

- Unity plot for all non coincident corrosion features of one ILI system
 - Good overall performance on depth
 - Small bias underestimating feature depth
 - Bias to underestimate length of long features
 - Bias over estimate width of features
Trial Observations and Performance - Corrosion

- Unity plot for all dent coincident corrosion features of one ILI system
 - Good overall performance on depth
 - Small bias underestimating feature depth
 - Bias to underestimate length of long features
 - Bias overestimate width of features
Similar performance observed for six magnetic ILI systems

Ultrasonic tool provided the same performance
• Corrosion POD performance effect of dent coincidence for one ILI system
 • No significant impact of dent on POD
 • In future, will consider as a function of dent depth
Corrosion depth sizing, effect of dent coincidence for one ILI system

- Small impact, if any, on average sizing variation
- In future, will consider as a function of dent depth
Effect of corrosion feature location on POD and sizing for an ILI system

- Small impact (peak zone most affected)

Trial Observations and Performance - Corrosion

- Effect of corrosion feature location on POD and sizing for an ILI system
 - Small impact (peak zone most affected)
Trial Observations and Performance - Gouges

- Effect performance on small pool of gouge features for one ILI system
 - Clock position not controlled
- Two types of gouges considered as provided by EPRG Project 217
 - Simulated – back hoe tooth formed
 - Machined – dented and machined
- Laser surface scan identifies features
- For six ILI service providers
 - High POD (>90%)
 - Simulated features POI (80%)
 - Machined features lower POI (67%)
- Significant error in gouge length
Trial Observations and Performance - Cracks

- Performance for Crack Features
 - Ultrasonic ILI tool
 - All features coincident with dent
 - Some features in corrosion
 - Good POD not sensitive to tool speed
 - POI includes identification of
 - Initiation surface
 - Orientation of the crack

![Crack Lengths Graph](Image)

![Tool Speed vs. POD Graph](Image)
Next Steps

• More work ongoing
 • Completion of the current work
 • Reporting to ILI Service Providers and Combined report (NDE-4-18)
 • Additional ILI performance trials
 • PRCI / US DOT PHMSA trials
 • 165 dents with corrosion, welds, cracks and gouges
 • Integrity management program enhancement
 • Performance for Detection, identification and sizing of cracks
 • Additional truth data (metallurgical sampling)
 • Catalogue samples at PRCI TDC for re-use
 • Improvement of ILI codes and standards
 • Provide information to support regulatory changed
 • Standards enhancement (e.g., API 1163 and API RP 1183)
Concluding Remarks

• Current work demonstrates
 • ILI trial program for mechanical damage with coincident features possible
 • Protocol and assessment procedures are good
 • Some opportunities for improvement
 • Performance of existing technology is good
 • Can detect, identify and size dents and corrosion
 • Can detect and identify gouges and cracks
 • Length sizing will improve as truth/reference data is shared
 • Shows promise to support fitness for purpose assessment of dents with coincident features

• Feedback to ILI Service Providers may support enhancements
 • Uniformity in reporting
 • Performance of ILI systems
Thank you for your attention.