Findings from PRCI Project MAT-8-3
“Understanding Why Cracks Fail”
Causes of Crack Failures in Pipelines
and Research Gap Analysis

Michiel Brongers*, Michael Rosenfeld**, Cara Macrory**, Gery Wilkowski*

(*) Engineering Mechanics Corporation of Columbus
(**) RSI Pipeline Solutions LLC
Introduction

- PRCI project MAT-8-3 “Understanding Why Cracks Fail”
 - Executed for Crack Management (CM) Strategic Research Priority (SRP)
 - Purpose: identify recommendations for future research efforts for CM-SRP

- Contractor was Engineering Mechanics Corporation of Columbus (Emc²), with its partner and primary subcontractor RSI Pipeline Solutions LLC (RSI)
 - Principal Investigators/Technical Leaders: Michiel Brongers/Mike Rosenfeld/Gery Wilkowski
 - PRCI Project Team Leader: David Whaley
 - PRCI Project Manager: Thomas Marlow
 - Key PRCI member contributors: Taylor Shie (Shell), Sean Keane (Enbridge)

Problem Statement

• Cracking-related pipeline failures in oil and gas pipelines have occurred as long as pipelines have been used.

• Need to identify gaps in operators’ knowledge, tools, and processes for recognizing and responding to cracking-related integrity threats in a timely manner.

• Need for operators to be more aligned in crack management strategies, because one failure reflects on the entire industry.
Objectives

• To assess the methodologies used to collect and review; crack failures, near misses and false positives, and how the available technologies are used, the following four CM-SRP pillars were followed:
 • **Susceptibility** to cracking,
 • **Inspection** for cracks,
 • **Assessment and Remediation** of crack-like features, and
 • **Management** of crack concerns.

• This assessment incorporated; an independent review of historic incidents, operator interviews, and subject matter expert (SME) opinions.
Scope of Work

• Task 1 – Collection and review of available reports
 • PRCI prior reports, public reports
• Task 2 – Collection and review of PRCI member incident reports and operator interviews
 • PRCI member reports, confidential reports
 • 16 operator interviews
• Task 3 – Compilation of root causes for historic crack-related pipeline incidents
 • 128 crack-related failure cases
 • 4 SME panel workshops (14 experts)
• Task 4 – Categorization of root causes within the CM-SRP
• Task 5 – Identification of research gaps in the CM-SRP
• Results from this work are research suggestions as related to crack management

• Research suggestions were cross-referenced with core priorities outlined in CM-SRP report “Pathway to Achieving Efficient and Effective Crack Management”

• The research suggestions from present work were compared with future research project ideas that were previously submitted to PRCI
The Crack Assessment Process

1. Pipeline configuration & product
2. Pipeline records
3. Repair/mitigation/re-assessment
4. Threat assessment
5. Field verification
6. Assessment method (test or ILI)
7. Defect type, location
8. Engineering critical assessments
9. Data processing & analysis
10. Accuracy & reliability method

Any missing link, weakness, or error will lead to an incorrect assessment.
Database of Crack-Related Failures from Members

- Recent historical distribution of crack-related failures from member cases supplied
 - Crack Location:
 - 46% long-seam weld, 37% base metal and/or fitting, 12% girth weld, 2% fitting only, and 3% unknown or not reported

 - Failure modes:
 - At discovery was 54% ruptures, 34% leaks, 7% surface flaw, 1% surface flaw that started leaking, 1% explosion, 3% unknown or not reported

 - Cracking incidents by fluid type:
 - 68% on liquids lines, 28% on gas lines, 4% unknown or not reported

 - Leaks and ruptures by fluid type:
 - Leaks: 74% on liquid lines, 26% on gas lines
 - Ruptures: 67% on liquid lines, 33% on gas lines
Crack-Related Failures: Fluid Type and Crack Appearance

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Explosion</th>
<th>Leak</th>
<th>Rupture</th>
<th>Surface Crack</th>
<th>Leak/Surface Crack</th>
<th>Unknown Appearance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown Fluid</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Liquid</td>
<td>1</td>
<td>31</td>
<td>45</td>
<td>6</td>
<td></td>
<td>4</td>
<td>87</td>
</tr>
<tr>
<td>Gas</td>
<td>11</td>
<td>22</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>44</td>
<td>69</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>128</td>
</tr>
</tbody>
</table>

- Normalizing data by installed mileage in the U.S. (DOT/PHMSA operator reports for 2019):
 - Hazardous Liquid or Carbon Dioxide Transportation Systems: 229,567 miles
 - Gas Transmission Systems: 301,622 miles

- **Hazardous liquids pipelines are approximately 2.7X more susceptible to crack-related rupture and approximately 3.7X more susceptible to crack-related leaks than gas pipelines.**
Crack-Related Failures: Pipe Grade and Diameter

<table>
<thead>
<tr>
<th>Steel Grade</th>
<th>Diameter (inches)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.625</td>
<td>10.75</td>
</tr>
<tr>
<td>Unknown Grade</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Grade B</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Grade C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X42</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>X45*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X46</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>X52</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X60</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM A27 Cast Steel, X70</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

* Note: one steel was listed as having a specified minimum yield strength (SMYS) of 45,000 psi (X45) which was likely negotiated by the purchaser and manufacturer and not actually an ‘X’ grade.
Crack-Related Failures: Pipe Grade and Diameter

- The data after normalizing by installed mileage reveal that natural gas pipelines with diameters larger than 22 inches are more prone to crack-related failure than smaller diameter pipelines.
Crack-Related Failures: Location on Pipe and Weld Type

<table>
<thead>
<tr>
<th>Crack Location In Pipe</th>
<th>dc-ERW</th>
<th>DSAW</th>
<th>ERW</th>
<th>FW</th>
<th>Helical DSAW</th>
<th>HF-ERW</th>
<th>LF-ERW</th>
<th>Seamless</th>
<th>SSAW</th>
<th>Unknown Seam</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown Location</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Base Metal</td>
<td>14</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Base Metal, Fitting</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fitting</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>GW</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>GW, Base Metal</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>GW, Fitting</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>LSW</td>
<td>5</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>LSW, Base Metal</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>LSW, GW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>29</td>
<td>17</td>
<td>23</td>
<td>2</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>16</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>

- The data after normalizing by mileage show that AO Smith FW and Youngstown Sheet & Tube ERW seam pipe have increased susceptibility to crack-related failures compared with other pipe manufacturers and other long-seam weld types.
Crack-Related Failures: Discovery Time and Appearance

<table>
<thead>
<tr>
<th>Time of Crack Discovery</th>
<th>Explosion</th>
<th>Leak</th>
<th>Rupture</th>
<th>Surface Crack</th>
<th>Leak/Surface Crack</th>
<th>Unknown Appearance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown Discovery Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>During Excavation</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>During Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>During Repair</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Gas Proof Test</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hydrostatic Test</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>In-Line Inspection</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>In-Service</td>
<td>29</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>44</td>
<td>69</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>128</td>
</tr>
</tbody>
</table>

- The data showed that far more crack related failures discovered from in-service experience, than from ILI or hydrotesting.
Crack Failures by cause in gas lines, liquids lines

Gas Pipelines - Root Causes of Crack-Related Cases
- Mechanical Root Causes, 39%
- Environmental Root Causes, 61%

Liquids Pipelines - Root Causes of Crack-Related Cases
- Mechanical Root Causes, 68%
- Environmental Root Causes, 32%
Gas Pipelines – Causes for Crack-Related Cases

SCC causes ~65%, hydrogen ~35%

- Stress Corrosion Cracking (SCC), 8%
- Near-Neutral-pH SCC, 8%
- Intergranular Fracture, Mixed-Mode Fracture, 3%
- Hydrogen Stress Cracking (HSC), 8%
- Hydrogen Induced Cracking (HIC), Lamination, 3%
- Hydrogen Embrittlement, High-pH SCC, 3%
- Hydrogen Cracking, 3%
- Corrosion, Near-Neutral-pH SCC, 3%
- High-pH SCC, 8%
- Circumferential SCC, Selective Corrosion, 3%
- Circumferential SCC, (nnpH SCC), 5%

Mechanical Causes

- Brittle Fracture, 3%
- Tensile Overload, 11%
- External Loading, 3%
- Fatigue, 3%
- Ground Movement, 3%
- Hot Crack, 3%
- Lack-Of-Fusion (LOF), Hook Crack, 3%
- Operation Fatigue, 5%
- Operation Fatigue, Brittle Fracture, 3%

Fatigue ~20%, External loads ~30%, manufacturing flaws ~20%, tensile overload ~30%
Liquids Pipelines – Causes of Crack-Related Failures

SCC causes ~25%, hydrogen ~20%, selective corrosion/corrosion ~40%, corrosion/fatigue ~15%

Fatigue ~35%, manufacturing flaws ~45%, tensile overload ~10%, other 10%
Crack-Failures at Long-Seam Welds in Liquids Pipelines

Liquids Pipelines - LSW Root Causes of Crack-Related Cases

- Transport Fatigue - with or without Operation Fatigue, 10%
- Weld Misalignment, Operation Fatigue, 2%
- Circumferential SCC, 2%
- Corrosion Fatigue, 4%
- Corrosion Pitting, Operation Fatigue, 2%
- Hook Crack - with or without Operation Fatigue, 22%
- Hook Crack, Local Thin Area, 2%
- Hook Crack, Stress Corrosion Cracking (SCC), 2%
- Hot Crack, Operation Fatigue, 2%
- Hydrogen Induced Cracking (HIC), 2%
- Intergranular Fracture, Hydrogen Assisted Cracking (HAC), 4%
- Near-Neutral-pH SCC, 2%
- Lack-Of-Fusion (LOF), Hook Crack, Lamination - with or without Operation Fatigue, 12%
- Lamination, Fatigue, 2%
- Selective Corrosion - with or without Operation Fatigue, 6%
- Sulfide Stress Cracking (SSC), Hook Crack, 2%
- Stitching, 2%
- Operation Fatigue - with or without Ductile Tearing, 18%

SCC causes ~15%, hydrogen ~15%, selective corrosion/corrosion ~20%, manufacturing ~40%
Crack-Related Failures: by CM-SRP pillars

<table>
<thead>
<tr>
<th>#</th>
<th>Cracking Susceptibility</th>
<th>#</th>
<th>Crack Inspections</th>
<th>#</th>
<th>Crack Assessment and Remediation</th>
<th>#</th>
<th>Crack Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Factors made pipe susceptible to operational fatigue cracking</td>
<td>6</td>
<td>ILI issue - signals misinterpreted</td>
<td>4</td>
<td>Repair did not perform as planned</td>
<td>13</td>
<td>Unaware of severity of manufacturing defects in new line pipe</td>
</tr>
<tr>
<td>10</td>
<td>Factors made pipe susceptible to HAC or HIC</td>
<td>4</td>
<td>Hydrostatic test issue - cracks initiated or grew</td>
<td>2</td>
<td>Issues with data quality</td>
<td>10</td>
<td>Unaware of construction damage</td>
</tr>
<tr>
<td>10</td>
<td>Factors made pipeline susceptible to nnpH SCC</td>
<td>3</td>
<td>ILI issue - weld geometry</td>
<td>2</td>
<td>Issues with calculation inputs</td>
<td>8</td>
<td>Inadequate integrity management (IM) program</td>
</tr>
</tbody>
</table>

- PRIORITIZATION: Strictly considering the historic incident root causes, the order of priority for future research to prevent crack-related failures should be:
Research Gaps in Cracking Susceptibility

1. Improve cracking threat assessment methodologies,
2. Perform research to better understand and explore methods to minimize the threat of operational fatigue cracking,
3. Perform research to better understand and explore methods to minimize the threat of hydrogen assisted cracking (HAC) in vintage pipelines,
4. Perform research to establish crack growth rates (CGRs) for SCC,
5. Perform research to update crack interaction rules for SCC,
6. Perform research to determine threshold for crack initiation at selective corrosion,
7. Define what data to collect for a pipeline to determine susceptibility to specific cracking mechanisms,
8. Establish state-of-the-art of existing knowledge about mechanical behavior of linepipe steels exposed to hydrogen environment to enable conversion of vintage pipelines for hydrogen transport, and
9. Develop ILI methods that can non-destructively estimate material properties.
Research Gaps in Inspections for Cracks

1. Develop standard for descriptive terminology for crack-like anomalies,
2. Investigate detrimental versus beneficial effects of hydrostatic testing for liquids pipelines,
3. Investigate detrimental versus beneficial effects of hydrostatic testing for pre-qualifying a pipeline for pure or blended hydrogen service,
4. Collect and manufacture ILI test spools for validation of tools for cracks at welds,
5. Investigate benefits of running multiple different crack detection ILI technologies in the same pipeline,
6. Investigate benefits of multiple runs of the same crack detection ILI tool in the same pipeline,
7. Provide training about line pipe features for field-NDE inspectors and ILI analysts, and
8. Develop an NDE database.
Research Gaps in Assessment and Remediation of Cracks

1. Update the PRCI Pipeline Repair Manual,
2. Investigate influence of data quality and data uncertainties on assessment results,
3. Improve crack-growth-rate data for operational fatigue assessment,
4. Improve modeling of operational fatigue for complicated crack configurations,
5. Perform testing and update the fracture initiation transition temperature master curve model for newer line pipe steels, and
Research Gaps in Crack Management

1. Make PRCI research more easily available among PRCI members,
2. Make PRCI research results available beyond PRCI members,
3. Develop standard QA/QC procedures for procurement of new line pipe,
4. Collect and manufacture ILI test spools for validation of tools for cracks coinciding with other damage, and
5. Develop a crack-specific guideline for integrity management programs.
Next Steps for PRCI Members

1. Formalize the 28 research suggestions by submitting them in PRCI web tool
 • Can be entered by committee representatives

2. Perform cross-referencing of new ideas with existing ideas and CM-SRP priorities
 • Final Report provides cross-referencing

3. Prioritize ideas based on PRCI resources
 • Ideas are labeled by technical committees (DMC, I&I, CORR) in the project report

4. Prepare and issue RFPs for future research
 • Detailed idea descriptions are suggested in the project Final Report
Thank you for your attention

Contact Information:

Gwilkowski@emc-sq.com
Engineering Mechanics Corporation of Columbus
3518 Riverside Drive – Suite 202; Columbus, OH 43221
614-459-3200

Or

Mike Rosenfeld, RSI
Mrosenfeld@rsi-ps.com