

Introduction

- PRCI project MAT-8-3 "Understanding Why Cracks Fail"
 - Executed for Crack Management (CM) Strategic Research Priority (SRP)
 - Purpose: identify recommendations for future research efforts for CM-SRP
- Contractor was Engineering Mechanics Corporation of Columbus (Emc²), with its partner and primary subcontractor RSI Pipeline Solutions LLC (RSI)
 - Principal Investigators/Technical Leaders: Michiel Brongers/Mike Rosenfeld/Gery Wilkowski
 - PRCI Project Team Leader: David Whaley
 - PRCI Project Manager: Thomas Marlow
 - Key PRCI member contributors: Taylor Shie (Shell), Sean Keane (Enbridge)
- Final Report, PRCI Catalog No. PR-276-241503-R01, "Causes of Crack Failures in Pipelines and Research Gap Analysis," February 2022

Problem Statement

- Cracking-related pipeline failures in oil and gas pipelines have occurred as long as pipelines have been used.
- Need to identify gaps in operators' knowledge, tools, and processes for recognizing and responding to cracking-related integrity threats in a timely manner.

• Need for operators to be more aligned in crack management strategies, because one failure reflects on the entire industry.

Objectives

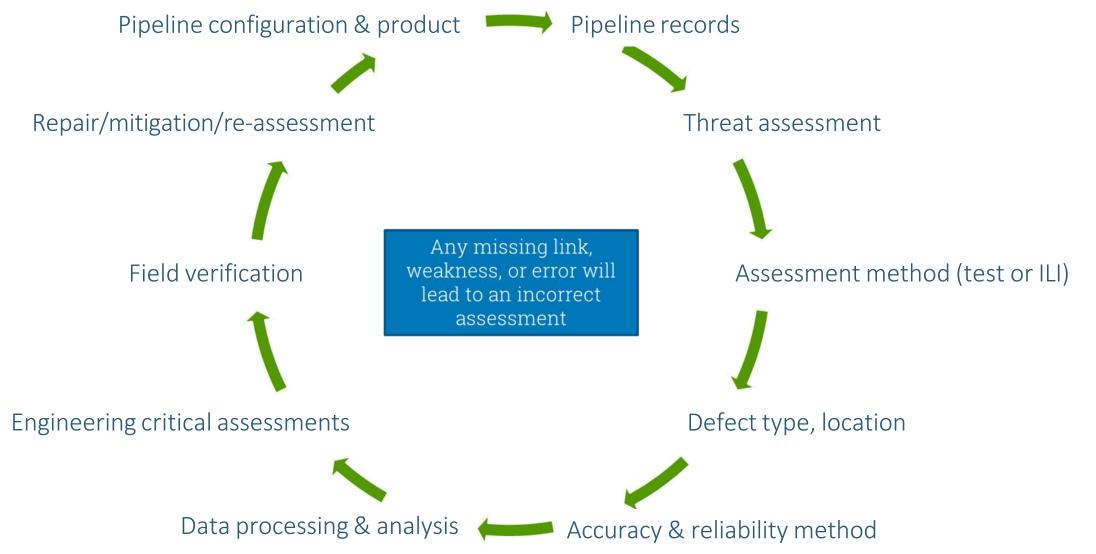
- To assess the methodologies used to collect and review; crack failures, near misses and false positives, and how the available technologies are used, the following four CM-SRP pillars were followed:
 - Susceptibility to cracking,
 - Inspection for cracks,
 - Assessment and Remediation of crack-like features, and
 - Management of crack concerns.
- This assessment incorporated; an independent review of historic incidents, operator interviews, and subject matter expert (SME) opinions.

Scope of Work

- Task 1 Collection and review of available reports
 - PRCI prior reports, public reports
- Task 2 Collection and review of PRCI member incident reports and operator interviews
 - PRCI member reports, confidential reports
 - 16 operator interviews
- Task 3 Compilation of root causes for historic crack-related pipeline incidents
 - 128 crack-related failure cases
 - 4 SME panel workshops (14 experts)
- Task 4 Categorization of root causes within the CM-SRP
- Task 5 Identification of research gaps in the CM-SRP

Background

- Results from this work are research suggestions as related to crack management
- Research suggestions were cross-referenced with core priorities outlined in CM-SRP report "Pathway to Achieving Efficient and Effective Crack Management"
- The research suggestions from present work were compared with future research project ideas that were previously submitted to PRCI



The Crack Assessment Process

Database of Crack-Related Failures from Members

- Recent historical distribution of crack-related failures from member cases supplied
 - Crack Location:
 - 46% long-seam weld, 37% base metal and/or fitting, 12% girth weld, 2% fitting only, and 3% unknown or not reported
 - Failure modes:
 - At discovery was 54% ruptures, 34% leaks, 7% surface flaw, 1% surface flaw that started leaking, 1% explosion, 3% unknown or not reported
 - Cracking incidents by fluid type:
 - 68% on liquids lines, 28% on gas lines, 4% unknown or not reported
 - Leaks and ruptures by fluid type:
 - Leaks: 74% on liquid lines, 26% on gas lines
 - Ruptures: 67% on liquid lines, 33% on gas lines

Crack-Related Failures: Fluid Type and Crack Appearance

	Crack Appearance									
Fluid	Explosion	Leak	Rupture	Surface Crack	Leak/ Surface Crack	Unknown Appearance	Total			
Unknown Fluid		2	2	1			5			
Liquid	1	31	45	6		4	87			
Gas		11	22	2	1		36			
Total	1	44	69	9	1	4	128			

• Normalizing data by installed mileage in the U.S. (DOT/PHMSA operator reports for 2019):

Hazardous Liquid or Carbon Dioxide Transportation Systems: 229,567 miles

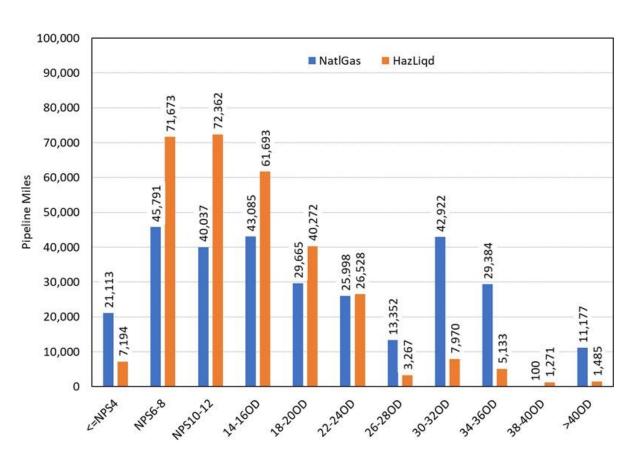
• Gas Transmission Systems: 301,622 miles

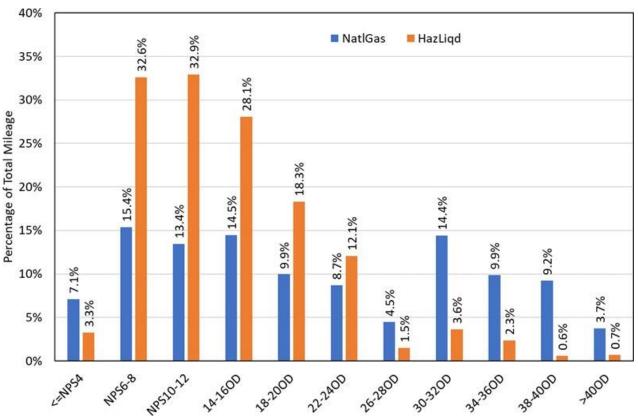
• Hazardous liquids pipelines are approximately 2.7X more susceptible to crack-related rupture and approximately 3.7X more susceptible to crack-related leaks than gas pipelines.

Crack-Related Failures: Pipe Grade and Diameter

Steel	Diameter (inches)																	
Grade	8.625	10.75	12.75	14	16	18	20	22	24	26	28	30	32	34	36	40	Unknown Diameter	Total
Unknown Grade	1							1								1	5	8
Grade B		2	2		1		1	1						1				8
Grade C		1																1
X42	4	3	3	1			1					1						13
X45*			1															1
X46	2	3	3		1		3	7										19
X52		1	4		2	1	3	6	8	8	1	6	1	11	3			55
X60			1		1				3	1		1				1	1	9
X65						1	1							3				5
X70									3			5						8
ASTM A27 Cast Steel, X70					1													1
Total	7	10	14	1	6	2	9	15	14	9	1	13	1	15	3	2	6	128

^{*} Note: one steel was listed as having a specified minimum yield strength (SMYS) of 45,000 psi (X45) which was likely negotiated by the purchaser and manufacturer and not actually an 'X' grade.





Crack-Related Failures: Pipe Grade and Diameter

• The data after normalizing by installed mileage reveal that *natural gas pipelines with diameters* larger than 22 inches are more prone to crack-related failure than smaller diameter pipelines.

EPRG-PRCI-APGA 23rd Joint Technical Meeting Edinburgh, Scotland • 6–10 June 2022

Crack-Related Failures: Location on Pipe and Weld Type

Crack					Long-	Seam W	eld				
Location In Pipe	dc- ERW	DSAW	ERW	FW	Helical DSAW	HF- ERW	LF- ERW	Seam- less	SSAW	Unknown Seam	Total
Unknown Location			1							3	4
Base Metal		14	6	10	1	3	1	5	1	6	47
Base Metal, Fitting						1					1
Fitting		1								1	2
GW		1		3						1	5
GW, Base Metal			2	2		1				1	6
GW, Fitting					1			1		2	4
LSW	5	13	8	7		7	12			1	53
LSW, Base Metal	2						1		1	1	5
LSW, GW				1							1
Total	7	29	17	23	2	12	14	6	2	16	128

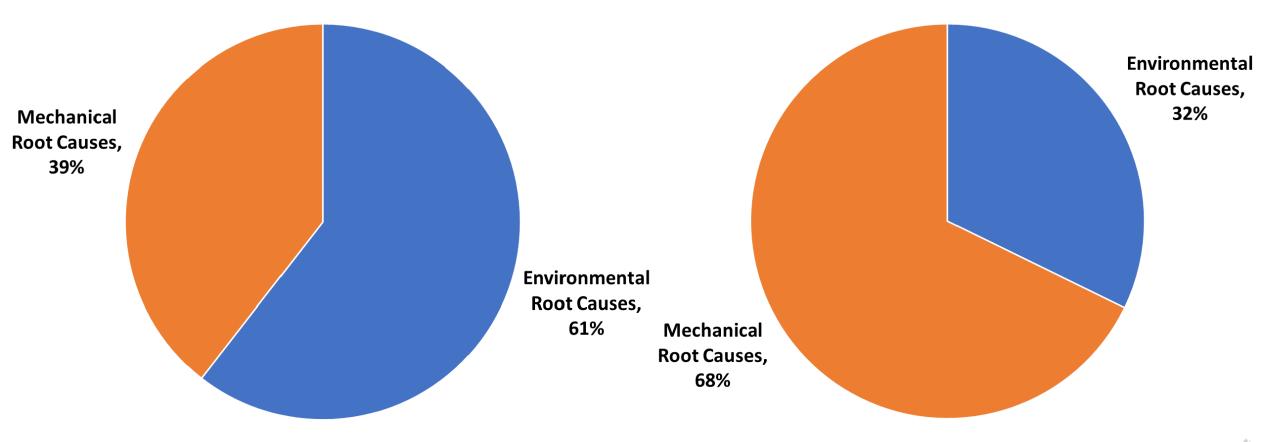
• The data after normalizing by mileage show that AO Smith FW and Youngstown Sheet & Tube ERW seam pipe have increased susceptibility to crack-related failures compared with other pipe manufacturers and other long-seam weld types.

EPRG-PRCI-APGA 23rd Joint Technical Meeting Edinburgh, Scotland • 6–10 June 2022

Crack-Related Failures: Discovery Time and Appearance

	Crack Appearance									
Time of Crack Discovery	Explosion	Leak	Rupture	Surface Crack	Leak/ Surface Crack	Unknown Appearance	Total			
Unknown Discovery Time						4	4			
During Excavation		2					2			
During Manufacturing				1			1			
During Repair	1						1			
Gas Proof Test			1				1			
Hydrostatic Test		2	8	2			12			
In-Line Inspection		11		6			17			
In-Service		29	60		1		90			
Total	1	44	69	9	1	4	128			

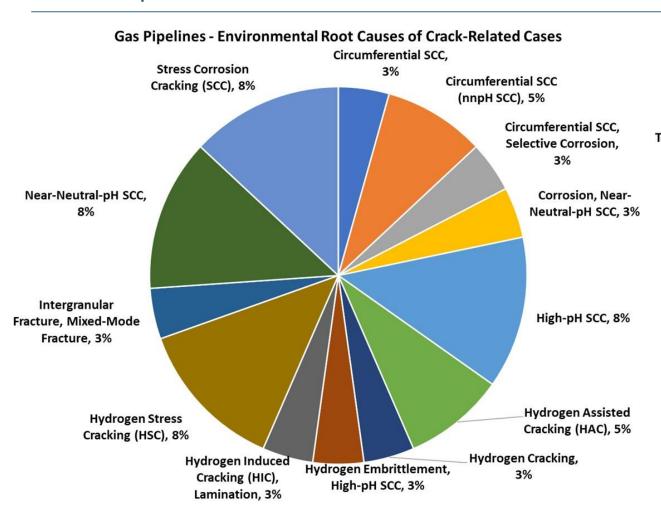
• The data showed that far more crack related failures discovered from in-service experience, than form ILI or hydrotesting.

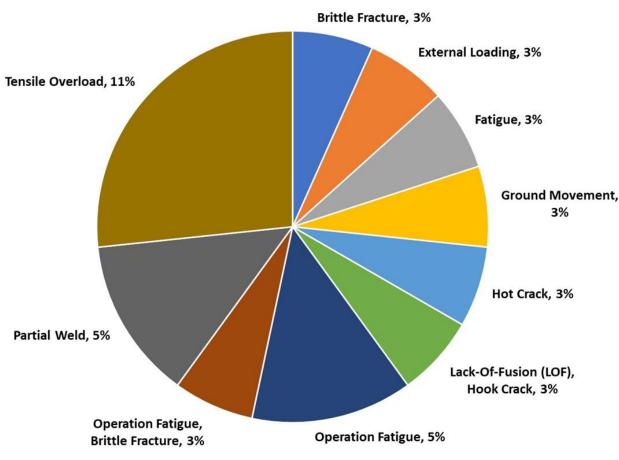


Crack-Failures by cause in gas lines, liquids lines

Gas Pipelines - Root Causes of Crack-Related Cases

Liquids Pipelines - Root Causes of Crack-Related Cases



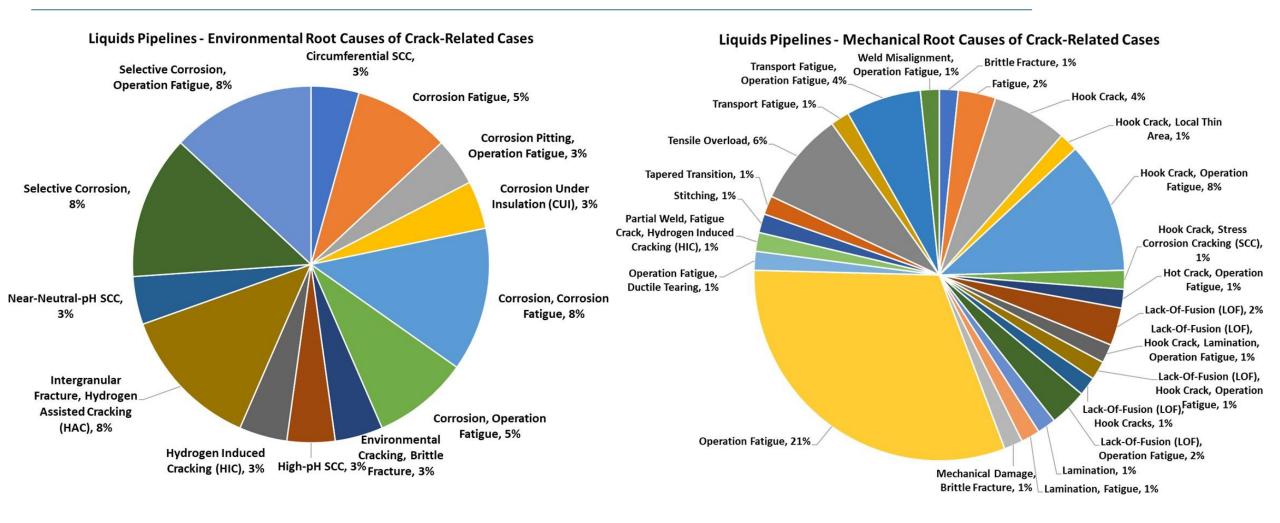


Gas Pipelines – Causes for Crack-Related Cases

Gas Pipelines - Mechanical Root Causes of Crack-Related Cases

SCC causes ~65%, hydrogen ~35%

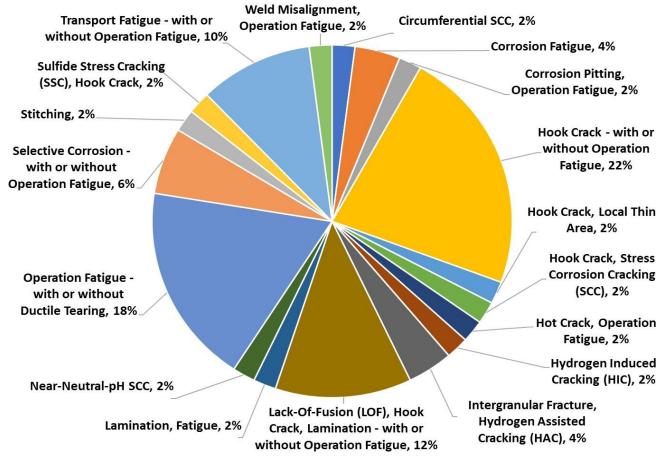
Fatigue ~20%, External loads ~30%, manufacturing flaws ~20%, tensile overload ~30%



Liquids Pipelines – Causes of Crack-Related Failures

SCC causes ~25%, hydrogen ~20%, selective corrosion/corrosion ~40%, corrosion/fatigue ~15%

Fatigue ~35%, manufacturing flaws ~45%, tensile overload ~10%, other 10%



Crack-Failures at Long-Seam Welds in Liquids Pipelines

SCC causes ~15%, hydrogen ~15%, selective corrosion/corrosion ~20%, manufacturing ~40%

Crack-Related Failures: by CM-SRP pillars

#	Cracking Susceptibility	#	Crack Inspections	#	Crack Assessment and Remediation	#	Crack Management
28	Factors made pipe susceptible to operational fatigue cracking	6	ILI issue - signals misinterpreted	4	Repair did not perform as planned	13	Unaware of severity of manufacturing defects in new line pipe
10	Factors made pipe susceptible to HAC or HIC	4	Hydrostatic test issue - cracks initiated or grew	2	Issues with data quality	10	Unaware of construction damage
10	Factors made pipeline susceptible to nnpH SCC	3	ILI issue - weld geometry	2	Issues with calculation inputs	8	Inadequate integrity management (IM) program

- PRIORITIZATION: Strictly considering the historic incident root causes, the order of *priority for future research to prevent crack-related failures should be:*
- 1. Susceptibility, 2. Management, 3. Inspections, 4. Assessment and Remediation.

Research Gaps in Cracking Susceptibility

- 1. Improve cracking threat assessment methodologies,
- 2. Perform research to better understand and explore methods to minimize the threat of operational fatigue cracking,
- 3. Perform research to better understand and explore methods to minimize the threat of hydrogen assisted cracking (HAC) in vintage pipelines,
- 4. Perform research to establish crack growth rates (CGRs) for SCC,
- 5. Perform research to update crack interaction rules for SCC,
- 6. Perform research to determine threshold for crack initiation at selective corrosion,
- 7. Define what data to collect for a pipeline to determine susceptibility to specific cracking mechanisms,
- 8. Establish state-of-the-art of existing knowledge about mechanical behavior of linepipe steels exposed to hydrogen environment to enable conversion of vintage pipelines for hydrogen transport, and
- 9. Develop ILI methods that can non-destructively estimate material properties.

Research Gaps in Inspections for Cracks

- 1. Develop standard for descriptive terminology for crack-like anomalies,
- 2. Investigate detrimental versus beneficial effects of hydrostatic testing for liquids pipelines,
- 3. Investigate detrimental versus beneficial effects of hydrostatic testing for pre-qualifying a pipeline for pure or blended hydrogen service,
- 4. Collect and manufacture ILI test spools for validation of tools for cracks at welds,
- 5. Investigate benefits of running multiple <u>different</u> crack detection ILI technologies in the same pipeline,
- 6. Investigate benefits of multiple runs of the <u>same</u> crack detection ILI tool in the same pipeline,
- 7. Provide training about line pipe features for field-NDE inspectors and ILI analysts, and
- 8. Develop an NDE database.

Research Gaps in Assessment and Remediation of Cracks

- 1. Update the PRCI Pipeline Repair Manual,
- 2. Investigate influence of data quality and data uncertainties on assessment results,
- 3. Improve crack-growth-rate data for operational fatigue assessment,
- 4. Improve modeling of operational fatigue for complicated crack configurations,
- 5. Perform testing and update the fracture initiation transition temperature master curve model for newer line pipe steels, and
- 6. Continue improving crack assessment models for girth welds.

Research Gaps in Crack Management

- 1. Make PRCI research more easily available among PRCI members,
- 2. Make PRCI research results available beyond PRCI members,
- 3. Develop standard QA/QC procedures for procurement of new line pipe,
- 4. Collect and manufacture ILI test spools for validation of tools for cracks coinciding with other damage, and
- 5. Develop a crack-specific guideline for integrity management programs.

Next Steps for PRCI Members

- 1. Formalize the 28 research suggestions by submitting them in PRCI web tool
 - Can be entered by committee representatives
- 2. Perform cross-referencing of new ideas with existing ideas and CM-SRP priorities
 - Final Report provides cross-referencing
- 3. Prioritize ideas based on PRCI resources
 - Ideas are labeled by technical committees (DMC, I&I, CORR) in the project report
- 4. Prepare and issue RFPs for future research
 - Detailed idea descriptions are suggested in the project Final Report

Thank you for your attention

Contact Information:

Gwilkowski@emc-sq.com

Engineering Mechanics Corporation of Columbus 3518 Riverside Drive – Suite 202; Columbus, OH 43221 614-459-3200

Or

Mike Rosenfeld, RSI Mrosenfeld@rsi-ps.com

