

Headline: Purpose

<u>Why?</u>

- Operator Requirements to Evaluate:
 - CP Performance against Relevant Criteria
 - Pipeline Coating Condition

How!

- Traditional Overriding Survey Techniques
 - CIPS
 - DCVG / ACVG / Current Attenuation / Pearson's
- Emergence of Intensive / Combined Methods

What?

Stand-Alone Surveys v's Intensive Methods

- Reliability / Repeatability ?
 - Efficiency?
 - Cost Effectiveness?
 - Accuracy ?

PROCESS

Evaluation of Intensive Survey Methods

How?

- Review of Industry Standards / Papers / Technical Guidance
- Identification of Above Ground Survey Techniques / Methodologies
- Discussions / Interviews with Relevant Parties
 - Survey Providers
 - Technology Providers
 - Pipeline Operators
- Review of Operator Experiences

Study Process

- Overview of Techniques
- Distribution of Use
 - Questionnaire
- Operator Experiences
- Reliability Review
 - Pros and Cons
 - Where and When
- Future Developments
- Recommendations for Development / Further Clarifications

Overview Of Techniques

Study Process Identified the Following Survey Methods

Stand Alone Methods:

- Stand-Alone CIPS
- Stand Alone DCVG

Intensive Methods:

- Simultaneous CIPS / DCVG
- Lateral CIPS / DCVG
 - 4 Person Technique
 - 5 Person Techniques
- Trailing CIPS / DCVG
- Additional 'Hybrid' Surveys
 - Side Drain Cell to Cell
 - Hot Spot Cell to Cell

Considerations

- Overview of Techniques
- Methodologies
- Data Analysis
- Criteria
- **Personnel Requirements**
- Reference within International Standards

Reliability Review

Development of Comparative Scoring Matrix

- **Operational Aspects**
- **Personnel Aspects**
- **Industry Guidance**
- Data Analysis / Management 4.

	Operational Aspects				Personnel		Industry Guidance / Documentation		Data Analysis		
Weighting Scale	CP Current Interruption	Survey Efficiency	Right Of Way Access	Execution Complexity	Personnel Requirements	Personnel Competency	Established Methodology	Defined Criteria	Data Accuracy	Data Alignment	Data Interpretation
1	Just one	>6Km/Day	min. 2m	Easy	1	1	Comprehensively Documented	Comprehensively Documented	Good	<6m	Easy
2					2						
3	Some	4-5 m/Day	min. 4m	Moderate	3	3	Recognised in Standards	Recognised in Standards	Moderate	6m	Moderate
4					4						
5	All	<4Km/Day	min. 10m	Difficult	5	5	Reliant on local interpretations	Reliant on local interpretations	Poor	>6m	Difficult

Reliability Matrix			Stand Alone		Intensive Methods			
			2	3	4a	4b	5	
			DCVG	Simultaneous CIPS&DCVG	Lateral 4 person	Lateral 5 person	Trailing	
	CP Current Interruption	5	1	5	5	5	5	
Operational Aspects	Survey Efficiency	1	2	4	4	5	3	
Operational Aspects	Right Of Way Access	1	2	2	3	5	1	
	Execution Complexity	2	1	5	4	5	4	
Personnel Aspects	Personnel Requirements	3	2	4	4	5	4	
reisonnei Aspects	Personnel Competency	2	3	5	3	3	3	
Industry Guidance	Established Methodology	1	1	3	5	5	5	
illuustry Gulualice	Defined Criteria	1	1	2	5	5	5	
	Data Accuracy	2	1	3	3	4	3	
Data Analysis /	Data Alignment	3	3	3	2	2	2	
Management	Coating Defect Assessments	1	1	1	3	3	4	
	Data Interpretation	2	1	3	4	5	4	
Comparative Index per Technique:			19	40	45	52	43	
Stand Alone CIPS&DCVG combined:			43					

Reliability Review

- 1 Interruption of Current Sources
- Required for all CP assessments
- Most efficient survey techniques would advantageous
- DCVG requires only local interruption

2 – Survey Efficiencies

- Stand-alone methods advantageous due to;
 - Personnel / operational aspects / two data sets

Survey Type	Achievable Dist. Per / Day (km)				
Stand-Alone CIPS	6				
Stand-Alone DCVG	5				
Simultaneous CIPS / DCVG	3.5				
Lateral CIPS / DCVG 4 Person	4.5				
Lateral CIPS / DCVG 5 Person	3				
Trailing CIPS / DCVG	4.5				

3 – RoW / Access Requirements

- Significant Issues with Lateral Survey Technique (3-20m)
 - Permissible route
 - Changes in ground resistivity
 - Consider the route in question

4 – Execution Complexity

- Stand-alone methods Considered straightforward
- Intensive methods Separation distances may be difficult
- Additional personnel
- Emphasis on the survey lead

5 – Personnel Requirements

Survey Type	Personnel Required				
Stand-Alone CIPS	3				
Stand-Alone DCVG	2				
Simultaneous CIPS / DCVG	4				
Lateral CIPS / DCVG 4 Person	4				
Lateral CIPS / DCVG 5 Person	5				
Trailing CIPS / DCVG	4				

6 – Competency

- CP Survey Competency is 'Grey Area'
- Simultaneous CIPS / DCVG requires two competent survey leads
- Available training course manufacturer specific

Reliability Review

7 – Established Methodology

- Comprehensive methodologies for CIPS / DCVG in Int Standards
- Lack of defined methodology for intensive methods in Int Standards
 - Significant discrepancies relating to separation distances

8 - Defined Criteria

- CIPS Criteria documented in all Int standards
- DCVG Criteria small variations relating to Categorisation
- Sim CIPS / DCVG as above
- Intensive Methods Often criteria is depicted by the survey operator

9 – Data Accuracy

- All data relies on competent survey process
- Intensive survey issues;
 - Separation distance issue
 - Voltage gradient signal strength
 - 'Live View' Issues
 - **Establishing Remote Earth**

Data Alignment 10 –

- Benefits with Intensive methods due to single point GPS entry
- GPS Accuracies within the specific regions to be considered

11 – Coating Defect Assessments

Aspects to Consider

- Pin Points
- Sizes (Benchmarking required)
- **Corrosion Status**
- Assessing multiple / complex defects

12 – Data Interpretation

- Significant increase in data to manage / analyse when considering intensive methods
- DCVG Data does require some manual translation (equipment dependable)
- Data Interpretation / Analysis International Standards.

Questions Remain?

- Equipment / Survey Improvements
- Numerous Manufactures for all CP / Coating Survey Methods
- Multi Chanel Data Loggers for Intensive Methods
- Certain Manufacturers claim to have ability to perform add on surveys (ACVG / CA / SR Etc.)
- Comprehensive Data
 Management Software Packages

Question marks relating to Intensive Methods ???

- Consistent Methodology ?
- Access Restrictions?
- Coating Defect Assessment Accuracy?
- Coating Defect Criteria?
- Data Accuracy ?

Clear Advantages

- Two surveys in one pass
 - Limiting change in environment
 - Improved data alignment

'Know your Pipeline Understand the Challenges'

Going Forward

Field Trials

- Requirement to Understand Limitations / Gaps in Intensive Methods
- Comparable Field Trials of Intensive Vs Stand Alone Methods
- Findings to be shared with all parties

Onus on Operators

- Development of Pipeline Specific Survey Strategies to Include:
 - Comprehensive knowledge of Survey Route
 - Understanding Equipment / Survey technologies
 - Defined / Agreed Criteria for Survey Data Interpretation
 - Operational Communications with Survey providers / Information sharing etc.
 - Realistic Expectations
- Data Management Strategy
- Additional Data Sets

'Avoid reviewing survey / inspection data in isolation'

Headline: Calibri Light / blau / 30 pt

Thank you for your attention.